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ABSTRACT. Two new degree—based graph polynomials are introduced, and their rela-
tions to the Wiener index and degree distance (Schultz index) established. Expressions are
obtained, enabling the calculation of these polynomials for graph products.

1 Introduction

In contemporary chemical graph theory, a large number of molecular structure de-
scriptors are being considered, that depend on distances and vertex degrees of molec-

ular graphs. Details on distance—based structure descriptors and their applications
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can be found in the books [10,11] and the references cited therein. Details of degree—
based structure descriptors can be found in the recent papers [6,22] and the references
cited therein.

The graphs considered in this paper (and in chemical graph theory in general [12])
are assumed to be connected and simple. Let G be such a graph with vertex set V(G)
and edge set F(G). The distance between two vertices u and v of G is denoted by
d(u,v) and is defined as the number of edges in a shortest path connecting u and v
[1]. The oldest and most studied distance-based structure descriptor is the Wiener
index [3,4, 14, 19], introduced as early as in 1947 [23] and defined as the sum of

distances between all pairs of vertices of the underlying graph:

WG =) duv).

{u,w}CV(G)

In the 1980s Hosoya [17] came to the ingenious idea to use a polynomial to gener-
ate distance distributions for graphs. It was later recognized that equivalent results
were much earlier put forward by Altenburg [15], but these had little impact on the
development of the concept.

Hosoya defined the polynomial

Hos(G,x) = Z d(G, k) z*

k>0

where d(G, k) is the number of vertex pairs in the graph G whose distance is k. An

alternative (but equivalent) way of writing this polynomial is

Hos(G,x) = Z gdwv) (1.1)
{u,v}CV(G)

The first derivative of Hos(G, ) at = 1 is equal to the Wiener index of G. For this
reason Hosoya named this polynomial Wiener polynomial. Late the name Hosoya
polynomial was proposed and this name prevails in the contemporary literature. De-
tails on the theory of the Hosoya polynomial as well as an exhaustive bibliography

can be found in the review [15].
The degree d, of a vertex w is the number of its first neighbors. The oldest

and most studied degree—based structure descriptors are the first and second Zagreb
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indices, defined as
M(G)= > d and My(G)= Y dyd, .
veV(Q) weE(G)
For details see [2,9,18,22].
Motivated by formula (1.1), three of the present authors [21] conceived analogous

degree—based polynomials, namely

Sa(x) = Z ™ and Hg(x) = Z ghutde

ueV(G) weE(G)

and proved the following results:

Theorem 1.1. [21] Let G be a graph, not necessarily connected. Then,
Sa(l) =V(G)] ; Sa(1) =2IE(G)| ; He(l)=|E(G).
We can now add to this:

Theorem 1.2. Let G be a graph, not necessarily connected. Then,
H (1) = Mi(G)
with M1(G) denoting the first Zagreb index.

Proof. The first derivative of the polynomial Hg(z) is equal to Y (d, + d,) z%Fdv1
which for z = 1 yields ) (d, + d,). It has been shown [6] that the first Zagreb index

uv

obeys the identity

Mi(G)= ) (dy+d).

weE(G)
O

Let Gy and Gj be two graphs with disjoint vertex sets. Then the graph products
G1+ Gy, G; X G, and G;[G3] are defined as follows [16]:

1. G1+ @Yy is the graph for which V(G +Gs) = V(G1)UV (Gy) and E(G+G2) =
E(Gl) U E(Gg) U {UU | u e V(Gl),v € V(Gg)}

2. G1 x Gy is the graph for which V(G x G) = V(G1) x V(G3) and (u,v)(u',v') €
E(Gy x Gy) if u =" and v € E(Gs) or v =v" and uu’ € E(Gy).
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3. G1[Gs] is the graph for which V(G,[Gs]) = V(G1) x V(Gs) and (u,v)(u',v") €
E(G41]Gq]) if u =" and v’ € E(G3) or uv’ € E(Gy).

In [21] also the following result was proven:

Theorem 1.3. [21] Let for ¢ = 1, 2, the number of vertices of the graph G; be denoted
by p;. Then

HG1+G2 (JZ’) = x2p2 HGl (SL‘) + :CZPI HGz (:IZ‘) + ZPrre SGl (SC) ) SG2 (l‘) :

In what follows we shall be concerned with a further structure descriptor, defined

as

S(G)= Y (du+d,)du,v).

{u,v}CV(Q)
This degree—weighted version of the Wiener index was first time introduced by

Dobrynin and Kochetova [5] and called degree distance.
The same quantity was examined in the paper [8] under the name Schultz indez.
Namely, somewhat earlier H. P. Schultz [20] proposed a structure descriptor named

molecular topological index, defined as

MTI(G) = i d(A + D),

i=1
where A and D are the adjacency and distance matrices of the underlying molecular
graph G, and d is the vector of vertex degrees. It can be easily shown that
MTIG)= > di+ > (du+dy)d(u,v)
ueV(G) {u,v}CV(G)
which means that

MTI(G) = My(G) + S(G) .

More details on the properties of degree distance can be found in a recent paper [7].

2 Main Results

Definition 2.1. Let G be a graph, not necessarily connected. We define the polyno-
mial IC(G, ) as:
]C(G, Z‘) _ Z pdutdo

{u,v}CV(G)
u#v
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Example 2.2. Let Ry, be a k-regular graph on p vertices. Let K, , C,, W, , Ky, , and
P, be the complete graph, cycle, wheel, complete bipartite graph, and path, respectively.
Then

]C(Rk, I) =

’C(Km,na l’) =

KW,,x) =

K(Cp,x) =

(

(
K(K,,z) = (”2‘) g2

(

(

K(P,z) = 2°+2(n—2)2’+ (n ; 2) .

Corollary 2.3. Let G be a graph with p vertices and q edges. Then

K(G,1) = H(G,l)—(g)
K'(G,1) = 2¢(p—1).

Theorem 2.4. Let for i = 1,2, the number of vertices and edges of the graph G; be,
respectively, p; and q; . Then
K(Gi+ Gy,z) = 22K(Gh,z) + 2 K(Gy, x) + 2”72 Sg, (2)Sq,(z)  (2.1)
K(G1 x Gy, ) = Sg,(#*) K(Gy,x) + Sg, (22) K(Ga, x)

+ 2K(Gy,2) K(G2, ) (2.2)
K(G1[Gs),2) = Sa,(2%) K(Gy,272) + Sq, (2°72) K(Ga, )
+ 2K(Gy,2P?) K(Gy, x) . (2.3)

Proof. In what follows, we always assume that u # v.

Identity (2.1):

’C(Gl + GQ, ZL’) = Z :Bd“+d” = Z xdu+dv+2p2

{u,’U}CV(Gl-‘rGg) {u,v}CV(Gl)
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§ a:du‘i’dv +2p1 + E xdu+dv +p1+p2

{uv}CV(G2) u€V(G1), veV(Ga)
x2p2 Z xdu+dv + xzpl Z du+dv + I.p1+172 Z Z x
{u,v}CV(G1) {u,v}CV(Gg) uGV G1) 'UGV Gg)

2 K(Gy, z) + 2™ K(Ga, ) + 277256, (2)Se, (2)

Identity (2.2):

]C(Gl X GQ,%) — E xdu+dv — E xdu1+dv1+2du2
{u,w}CV(G1xG2) {ur,v1}CV(Gr)
ug=v9 €V (Ga)
+ E mdug Fdyy +2dy, + E xdul +dyy +duy +du,
{u2,v2}CV(G2) {(u1,u2),(v1,v2)}CV(G1 XG2)
up=v1€V(G1) uy #vq,u2#v2

_ Z ($2)du2 Z gy Tdoy + Z ($2)d"1 Z L

u2€V (Ga) {u1,v1}CV(G1) u1 €V (G1) {u2,v2}CV (G2)

_|_ 2 E xdul +dv1 E xdug +d'u2

{u1,01}CV(Gy) {u2,02}CV(G2)

= Sg,(2*) K(G1,2) + Sa, (2?) K(Ga, x) + 2K(G1,2) K(Gy, ) .

Identity (2.3):

K@Gha) = atthio YT gmallsd)s,
uw}CV(G1[G {u1,v1}CV(G1)
{ } ( 1[ 2]) ug=v9 €V (Gq)

§ J;du2+dv2+2p2du1 _|_ § aij(du1+dU1)+du2+dv2
{u2,v2}CV(G2) {(u1,u2),(v1,v2)}CV(G1[G2])
u=v1 €V(G1) up #vq,u2#v2
E : (1,2)du2 § (xm du1+dv1 + E 2132 du1 E xdw"‘dw

u2€V (Ga) {ul,’U1}CV(G1) U1EV(G1) {uz,UQ}CV(GQ)

2 E po (dul +d111 ) E :BduQ +d’u2

{ul,vl}CV(Gl) {’LLQ,’UQ}CV(GQ)

S, (23 KC(Gy, 2P?) + S, (#%72) K(Gy, 1) + 2K(G1, 272) K(Gy, 1) .
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Corollary 2.5. Let G1 and Gy be same as in Theorem 2.4 Then by Theorem (2.4)
and corollary (2.3) for the graphs G1 + G2 and G1 X Go we have:

K(G1+Gq, 1) = K(G1,1) + K(G2,1) + p1p2
K(Gl X GQ, 1) = IC(G]_[GQ], 1) = D2 ’C(Gl, 1) + p1 ,C(GQ, 1) + ZIC(Gl, 1) ’C(GQ, 1) .

Definition 2.6. Let G be a graph. We define the polynomial F (G, x) as:
F(G,z) = Z d(u,v) x¥rd
{u,w}CV(G)

Example 2.7. Using the same notation as in Fxample 2.2, we have:

F(Cyp,z) = niaz?

nn+1)(2n+1) A

F(Copy1,z) = 2

n

F(Kpn,x) = 2 (7;) 22" 42 (2> 22"+ mn ™t

FWy,z) = (n—3)(n—1)2%+ (n— 1)z""?
F(Py,z) = (n— 1)1:2—1—2(”; 1) z® + (n;l) ot
Corollary 2.8. Let G be a connected graph. Then,
F(G,1) =W(Q) , F'(G,1)=S5(G) .

By the above corollary, the following previously known formulas are obtained:

W(K,) = (Z) S(K,) = (Z) (2n — 2)
W(Cy,) =n? S(Cop) = 4n?

W(Conir) = n(n +1)(2n+1)/2  S(Consr) = 2n(n + 1)(2n + 1)

W(Kpn) =2 <Tg) +2 (Z) +mn S(Kp,) =4n (”21) +4m (Z) + mn(m +n)

W(W,) = (n—1)(n — 2) S(W,) = 2(n — 1)(3n — 8)
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If d(u,v) < 2 holds for all u,v € V(G), then the graph G is said to be of diameter
two.
Lemma 2.9. Let G be a graph of diameter two. Then F(G,z) = 2K(G,x) — Hg(x) .

Proof. Since G is of diameter two, d(u,v) < 2. It is clear that there are |E(G)| vertex

pairs such that d(u,v) = 1. Therefore,

F(G,x) = Z d(u, v) pttd = Z 2 gdutdv 4 Z gutd
)

u,v}CV (G u,v}CV(G)
{uv}CV(G) fuorcv e fucV (@)
— E du+dv _ E xdu+dv — (G I‘) HG(ZU) .
{uw}CV(G) weE(Q)

O

Corollary 2.10. [13] Let G be of diameter two. The Wiener index of G is given by

W(G) = 2('2‘) —|E@G)] .

Theorem 2.11. Let Gy and G5 be two graphs. Then, using the same notation as in

Theorem 2.4,
F(Gi+ Goz) = a2 (2&(@1, ) — HGl(a:)>+:U2p1 (2&(02, ) — HGQ(x))
+ 2P S (2) Se, (2) (2.4)
F(GiGalw) = Seu(a?) F(Gr,a™) + Sa, (a7) | 2K(Ga, ) = Hoy (1)
+ 2F(Gy, ") K(Ga, ) (2.5)
F(Gy x Go,x) = Sgy(2%) F(Gy,7) + S (22) F(Ga, 7)

v z[quQ, 2) F(Gy,z) + K(Gh, 2) F(Ga, )] (2.6)

Proof. Identity (2.4): It is clear that the graph G; 4+ Go always is of diameter two.
Therefore from Lemma (2.9) and Eq. (2.1) it follows

F(Gl + GQ, ZL‘) = 2’C(G1 + Gg, (L’) — HG1+G2(£L‘)
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2 (:c2p2/c<G1, z) + 2 K(Gy, w) + 2" 77 86, () Sa, (””)>
- (962p2Hc;1 (z) + 2™ He, () + 2" 7S¢, () Se, (x))

= P (QIC(Gl, r) — Hg, (x)) %P <2/C(G2, ) — HGQ(x))

+ $p1+pQSG1 (l‘) SG2 (l’) .

Identity (2.5):

F(Gi[Ga], z) = ST duv)a®tht = 3T d(ug, ) et 2

+

u,v}CV(G1[G {ug,v1}CV(Gy)
{0}V (GilGa)) mich@y

E d(u27 UQ) Idug +duvy +2p2duy

{u2,v2}CV(G2)
u1=v1 €V (Gq)

§ d(u U) xp2(du1 +dﬂ1)+du2 +dv2
Y

{(u1,u2),(v1,v2)}CV(G1[G2])
U Fv1,u2#v2)

Soo@h)te Y dlur,v) (@)t

u2 €V (G2) {u1,v1}CV(G1)

Z (2P2)dn [2 Z puatdoy Z Idu2+dv2]

u1€V(G1) {UQ,UQ}CV(GQ) UQ'L)QGE(GQ)
2 Z d(Uq, Ul) (xp2)du1 +dvl Z Idu2+dv2
{u1,01}CV(G1) {u2,v2}CV(G2)

Se, (22)F (G, 272) + S, (2272) [2 K(Gs,z) — He, (:1:)] 12 F(Gy, 272K (G, 7) .

Identity (2.6):

F(Gy x Go,z) = E d(u, v) xttd = E d(uy, vy ) xh v F2duy
{u,v}CV(G1xG2) {u1,v1}CV(G1)
ug=vg€V(G2)

_'_ § d(u2, UZ) xdu2+d’u2 +2du1 + g d(u7 U) xdu+dv
{ug,v9}CV(G2) {(u1,u2),(v1,v2)}CV(G1XG2)
u1=v1 €V (Gq) u Fv],u2#v2)

— E duQ E d u]_a ,Ul dul +dv1 + E dul E d(u27 ,02) xduQ +dv2
U2€V(G2) {u1,v1}CV(G1) U1€V(G1) {u2,v2}CV(G2)

+ E d(u, v) xhtdv

{(u1,u2),(v1,v2)}CV(G1 xG2)
u F#v],u2#v2)
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= Sa, () F(Gy,2) + Sa, (#%) F(Ga, ) + > d(u,v) z%+d
{(u1,u2),(v1,v2)}CV(G1 xG2)
U Fv1,u2#v2)
Since the graph G; x G5 is connected, for each u,v € V(G x Gs) such that u =
(ur,us),v = (v1,v9) and uy # vy, us # vy, we consider the path (uy,us) — (vy,us) —

(v1,v9) . Therefore,

E d(u,v) ™t = E [d(ulavl) +d(u2702)] gt Tt u
{(uy,ug),(v1,v2)}CV (G xG2) {(uy,ug),(v1,v2)}CV (G xG2)
uq#v],u2#v2) U #v1,u2#v2)

— E d(UI, ,Ul) xdul +duy +dug+dugy

{(u1,u2),(v1,v2)}CV(G1 xG2)
U Fv1,u2#v2)

+ E d(u27 UZ) xdul +dv1 +du2 +dv2

{(u1,u2),(v1,v2)}CV(G1 xG2)
U Fvq,u2#v2)

— 2 E xdug +d'u2 § d(u1, ,Ul) xdul +du1

{u2,v2}CV(G2) {ul,vl}CV(Gl)

+ 2 E xdul +dv]_ E d u27 ,U2 du2 +dv2

{fur,m}CV(G1)  {u2,02}CV (G
= 2|K(Gs, 2)F(Gy,2) + K(G1, 2) F(Ga, )
From the two above relations, Eq. (2.6) follows straightforwardly. O
Corollary 2.12. [24] Using the same notation as in Theorem 2.4, the Wiener indices

of G1 + Gy, G1[|G2], and Gy x G4 are given by:

W(Gi+Gs) = 2(@) +2(p;> +pip2 — (@1 + g2)

W(G[Ga]) = m [2(2)22) — Q2 +P22W(G1>

W(Gl X GQ) = p22 W(Gl) —|—p12 W(Gz) .
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