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ABSTRACT. Two new degree–based graph polynomials are introduced, and their rela-

tions to the Wiener index and degree distance (Schultz index) established. Expressions are

obtained, enabling the calculation of these polynomials for graph products.

1 Introduction

In contemporary chemical graph theory, a large number of molecular structure de-

scriptors are being considered, that depend on distances and vertex degrees of molec-

ular graphs. Details on distance–based structure descriptors and their applications
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can be found in the books [10,11] and the references cited therein. Details of degree–

based structure descriptors can be found in the recent papers [6,22] and the references

cited therein.

The graphs considered in this paper (and in chemical graph theory in general [12])

are assumed to be connected and simple. Let G be such a graph with vertex set V (G)

and edge set E(G). The distance between two vertices u and v of G is denoted by

d(u, v) and is defined as the number of edges in a shortest path connecting u and v

[1]. The oldest and most studied distance–based structure descriptor is the Wiener

index [3, 4, 14, 19], introduced as early as in 1947 [23] and defined as the sum of

distances between all pairs of vertices of the underlying graph:

W (G) =
∑

{u,v}⊂V (G)

d(u, v) .

In the 1980s Hosoya [17] came to the ingenious idea to use a polynomial to gener-

ate distance distributions for graphs. It was later recognized that equivalent results

were much earlier put forward by Altenburg [15], but these had little impact on the

development of the concept.

Hosoya defined the polynomial

Hos(G, x) =
∑
k≥0

d(G, k)xk

where d(G, k) is the number of vertex pairs in the graph G whose distance is k. An

alternative (but equivalent) way of writing this polynomial is

Hos(G, x) =
∑

{u,v}⊂V (G)

xd(u,v) . (1.1)

The first derivative of Hos(G, x) at x = 1 is equal to the Wiener index of G. For this

reason Hosoya named this polynomial Wiener polynomial . Late the name Hosoya

polynomial was proposed and this name prevails in the contemporary literature. De-

tails on the theory of the Hosoya polynomial as well as an exhaustive bibliography

can be found in the review [15].

The degree du of a vertex u is the number of its first neighbors. The oldest

and most studied degree–based structure descriptors are the first and second Zagreb
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indices, defined as

M1(G) =
∑

v∈V (G)

d2v and M2(G) =
∑

uv∈E(G)

du dv .

For details see [2, 9, 18,22].

Motivated by formula (1.1), three of the present authors [21] conceived analogous

degree–based polynomials, namely

SG(x) =
∑

u∈V (G)

xdu and HG(x) =
∑

uv∈E(G)

xdu+dv

and proved the following results:

Theorem 1.1. [21] Let G be a graph, not necessarily connected. Then,

SG(1) = |V (G)| ; S ′
G(1) = 2|E(G)| ; HG(1) = |E(G)| .

We can now add to this:

Theorem 1.2. Let G be a graph, not necessarily connected. Then,

H ′
G(1) = M1(G)

with M1(G) denoting the first Zagreb index.

Proof. The first derivative of the polynomial HG(x) is equal to
∑
uv

(du + dv)x
du+dv−1

which for x = 1 yields
∑
uv

(du + dv). It has been shown [6] that the first Zagreb index

obeys the identity

M1(G) =
∑

uv∈E(G)

(du + dv) .

Let G1 and G2 be two graphs with disjoint vertex sets. Then the graph products

G1 +G2 , G1 ×G2 , and G1[G2] are defined as follows [16]:

1. G1+G2 is the graph for which V (G1+G2) = V (G1)∪V (G2) and E(G1+G2) =

E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}.

2. G1×G2 is the graph for which V (G1×G2) = V (G1)×V (G2) and (u, v)(u′, v′) ∈

E(G1 ×G2) if u = u′ and vv′ ∈ E(G2) or v = v′ and uu′ ∈ E(G1).
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3. G1[G2] is the graph for which V (G1[G2]) = V (G1)× V (G2) and (u, v)(u′, v′) ∈

E(G1[G2]) if u = u′ and vv′ ∈ E(G2) or uu
′ ∈ E(G1).

In [21] also the following result was proven:

Theorem 1.3. [21] Let for i = 1, 2, the number of vertices of the graph Gi be denoted

by pi . Then

HG1+G2(x) = x2p2 HG1(x) + x2p1 HG2(x) + xp1+p2 SG1(x) · SG2(x) .

In what follows we shall be concerned with a further structure descriptor, defined

as

S(G) =
∑

{u,v}⊂V (G)

(du + dv) d(u, v) .

This degree–weighted version of the Wiener index was first time introduced by

Dobrynin and Kochetova [5] and called degree distance.

The same quantity was examined in the paper [8] under the name Schultz index .

Namely, somewhat earlier H. P. Schultz [20] proposed a structure descriptor named

molecular topological index , defined as

MTI(G) =
n∑

i=1

d(A+D)i

where A and D are the adjacency and distance matrices of the underlying molecular

graph G, and d is the vector of vertex degrees. It can be easily shown that

MTI(G) =
∑

u∈V (G)

d2u +
∑

{u,v}⊂V (G)

(du + dv) d(u, v)

which means that

MTI(G) = M1(G) + S(G) .

More details on the properties of degree distance can be found in a recent paper [7].

2 Main Results

Definition 2.1. Let G be a graph, not necessarily connected. We define the polyno-

mial K(G, x) as:

K(G, x) =
∑

{u,v}⊂V (G)
u ̸=v

xdu+dv .
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Example 2.2. Let Rk be a k-regular graph on p vertices. Let Kn , Cn , Wn , Km,n , and

Pn be the complete graph, cycle, wheel, complete bipartite graph, and path, respectively.

Then

K(Rk, x) =

(
p

2

)
x2k

K(Km,n, x) =

(
m

2

)
x2n +

(
n

2

)
x2m +mnxm+n

K(Kn, x) =

(
n

2

)
x2n−2

K(Wn, x) =

(
n− 1

2

)
x6 + (n− 1)xn+2

K(Cn, x) =

(
n

2

)
x4

K(Pn, x) = x2 + 2(n− 2)x3 +

(
n− 2

2

)
x4 .

Corollary 2.3. Let G be a graph with p vertices and q edges. Then

K(G, 1) = H(G, 1) =

(
p

2

)
K′(G, 1) = 2q (p− 1) .

Theorem 2.4. Let for i = 1, 2, the number of vertices and edges of the graph Gi be,

respectively, pi and qi . Then

K(G1 +G2, x) = x2p2K(G1, x) + x2p1K(G2, x) + xp1+p2SG1(x)SG2(x) (2.1)

K(G1 ×G2, x) = SG2(x
2)K(G1, x) + SG1(x

2)K(G2, x)

+ 2K(G1, x)K(G2, x) (2.2)

K(G1[G2], x) = SG2(x
2)K(G1, x

p2) + SG1(x
2p2)K(G2, x)

+ 2K(G1, x
p2)K(G2, x) . (2.3)

Proof. In what follows, we always assume that u ̸= v.

Identity (2.1):

K(G1 +G2, x) =
∑

{u,v}⊂V (G1+G2)

xdu+dv =
∑

{u,v}⊂V (G1)

xdu+dv+2p2
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+
∑

{u,v}⊂V (G2)

xdu+dv+2p1 +
∑

u∈V (G1), v∈V (G2)

xdu+dv+p1+p2

= x2p2
∑

{u,v}⊂V (G1)

xdu+dv + x2p1
∑

{u,v}⊂V (G2)

xdu+dv + xp1+p2
∑

u∈V (G1)

xdu
∑

v∈V (G2)

xdv

= x2p2K(G1, x) + x2p1K(G2, x) + xp1+p2SG1(x)SG2(x) .

Identity (2.2):

K(G1 ×G2, x) =
∑

{u,v}⊂V (G1×G2)

xdu+dv =
∑

{u1,v1}⊂V (G1)
u2=v2∈V (G2)

xdu1+dv1+2du2

+
∑

{u2,v2}⊂V (G2)
u1=v1∈V (G1)

xdu2+dv2+2du1 +
∑

{(u1,u2),(v1,v2)}⊂V (G1×G2)
u1 ̸=v1,u2̸=v2

xdu1+dv1+du2+dv2

=
∑

u2∈V (G2)

(x2)du2
∑

{u1,v1}⊂V (G1)

xdu1+dv1 +
∑

u1∈V (G1)

(x2)du1
∑

{u2,v2}⊂V (G2)

xdu2+dv2

+ 2
∑

{u1,v1}⊂V (G1)

xdu1+dv1
∑

{u2,v2}⊂V (G2)

xdu2+dv2

= SG2(x
2)K(G1, x) + SG1(x

2)K(G2, x) + 2K(G1, x)K(G2, x) .

Identity (2.3):

K(G1[G2], x) =
∑

{u,v}⊂V (G1[G2])

xdu+dv =
∑

{u1,v1}⊂V (G1)
u2=v2∈V (G2)

xp2(du1+dv1)+2du2

+
∑

{u2,v2}⊂V (G2)
u1=v1∈V (G1)

xdu2+dv2+2p2du1 +
∑

{(u1,u2),(v1,v2)}⊂V (G1[G2])
u1 ̸=v1,u2 ̸=v2

xp2(du1+dv1 )+du2+dv2

=
∑

u2∈V (G2)

(x2)du2
∑

{u1,v1}⊂V (G1)

(xp2)du1+dv1 +
∑

u1∈V (G1)

(x2p2)du1
∑

{u2,v2}⊂V (G2)

xdu2+dv2

+ 2
∑

{u1,v1}⊂V (G1)

xp2(du1+dv1 )
∑

{u2,v2}⊂V (G2)

xdu2+dv2

= SG2(x
2)K(G1, x

p2) + SG1(x
2p2)K(G2, x) + 2K(G1, x

p2)K(G2, x) .
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Corollary 2.5. Let G1 and G2 be same as in Theorem 2.4 Then by Theorem (2.4)

and corollary (2.3) for the graphs G1 +G2 and G1 ×G2 we have:

K(G1 +G2, 1) = K(G1, 1) +K(G2, 1) + p1 p2

K(G1 ×G2, 1) = K(G1[G2], 1) = p2K(G1, 1) + p1K(G2, 1) + 2K(G1, 1)K(G2, 1) .

Definition 2.6. Let G be a graph. We define the polynomial F(G, x) as:

F(G, x) =
∑

{u,v}⊂V (G)

d(u, v) xdu+dv

Example 2.7. Using the same notation as in Example 2.2, we have:

F(C2n, x) = n3 x4

F(C2n+1, x) =
n(n+ 1)(2n+ 1)

2
x4

F(Km,n, x) = 2

(
m

2

)
x2n + 2

(
n

2

)
x2m +mnxm+n

F(Wn, x) = (n− 3)(n− 1)x6 + (n− 1)xn+2

F(Pn, x) = (n− 1)x2 + 2

(
n− 1

2

)
x3 +

(
n− 1

3

)
x4 .

Corollary 2.8. Let G be a connected graph. Then,

F(G, 1) = W (G) , F ′(G, 1) = S(G) .

By the above corollary, the following previously known formulas are obtained:

W (Kn) =

(
n

2

)
S(Kn) =

(
n

2

)
(2n− 2)

W (C2n) = n3 S(C2n) = 4n3

W (C2n+1) = n(n+ 1)(2n+ 1)/2 S(C2n+1) = 2n(n+ 1)(2n+ 1)

W (Km,n) = 2

(
m

2

)
+ 2

(
n

2

)
+mn S(Km,n) = 4n

(
m

2

)
+ 4m

(
n

2

)
+mn(m+ n)

W (Wn) = (n− 1)(n− 2) S(Wn) = 2(n− 1)(3n− 8)

W (Pn) = (n− 1)2 +

(
n− 1

3

)
S(Pn) = 3(n− 1)2 − (n− 1) + 4

(
n− 1

3

)
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If d(u, v) ≤ 2 holds for all u, v ∈ V (G), then the graph G is said to be of diameter

two.

Lemma 2.9. Let G be a graph of diameter two. Then F(G, x) = 2K(G, x)−HG(x) .

Proof. Since G is of diameter two, d(u, v) ≤ 2. It is clear that there are |E(G)| vertex

pairs such that d(u, v) = 1 . Therefore,

F(G, x) =
∑

{u,v}⊂V (G)

d(u, v) xdu+dv =
∑

{u,v}⊂V (G)
d(u,v)=2

2 xdu+dv +
∑

{u,v}⊂V (G)
d(u,v)=1

xdu+dv

=
∑

{u,v}⊂V (G)

2 xdu+dv −
∑

uv∈E(G)

xdu+dv = 2K(G, x)−HG(x) .

Corollary 2.10. [13] Let G be of diameter two. The Wiener index of G is given by

W (G) = 2

(
|G|
2

)
− |E(G)| .

Theorem 2.11. Let G1 and G2 be two graphs. Then, using the same notation as in

Theorem 2.4,

F(G1 +G2, x) = x2p2
(
2K(G1, x)−HG1(x)

)
+x2p1

(
2K(G2, x)−HG2(x)

)
+ xp1+p2 SG1(x)SG2(x) (2.4)

F(G1[G2], x) = SG2(x
2)F(G1, x

p2) + SG1(x
2p2)

[
2K(G2, x)−HG2(x)

]
+ 2F(G1, x

p2)K(G2, x) . (2.5)

F(G1 ×G2, x) = SG2(x
2)F(G1, x) + SG1(x

2)F(G2, x)

+ 2
[
K(G2, x)F(G1, x) +K(G1, x)F(G2, x)

]
. (2.6)

Proof. Identity (2.4): It is clear that the graph G1 + G2 always is of diameter two.

Therefore from Lemma (2.9) and Eq. (2.1) it follows

F(G1 +G2, x) = 2K(G1 +G2, x)−HG1+G2(x)
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= 2
(
x2p2K(G1, x) + x2p1K(G2, x) + xp1+p2SG1(x)SG2(x)

)
−

(
x2p2HG1(x) + x2p1HG2(x) + xp1+p2SG1(x)SG2(x)

)
= x2p2

(
2K(G1, x)−HG1(x)

)
+x2p1

(
2K(G2, x)−HG2(x)

)
+ xp1+p2SG1(x)SG2(x) .

Identity (2.5):

F(G1[G2], x) =
∑

{u,v}⊂V (G1[G2])

d(u, v)xdu+dv =
∑

{u1,v1}⊂V (G1)
u2=v2∈V (G2)

d(u1, v1) x
p2(du1+dv1 )+2du2

+
∑

{u2,v2}⊂V (G2)
u1=v1∈V (G1)

d(u2, v2)x
du2+dv2+2p2du1

+
∑

{(u1,u2),(v1,v2)}⊂V (G1[G2])
u1 ̸=v1,u2 ̸=v2)

d(u, v) xp2(du1+dv1 )+du2+dv2

=
∑

u2∈V (G2)

(x2)du2
∑

{u1,v1}⊂V (G1)

d(u1, v1) (x
p2)du1+dv1

+
∑

u1∈V (G1)

(x2p2)du1
[
2

∑
{u2,v2}⊂V (G2)

xdu2+dv2 −
∑

u2v2∈E(G2)

xdu2+dv2

]

+ 2
∑

{u1,v1}⊂V (G1)

d(u1, v1) (x
p2)du1+dv1

∑
{u2,v2}⊂V (G2)

xdu2+dv2

= SG2(x
2)F(G1, x

p2) + SG1(x
2p2)

[
2K(G2, x)−HG2(x)

]
+2F(G1, x

p2)K(G2, x) .

Identity (2.6):

F(G1 ×G2, x) =
∑

{u,v}⊂V (G1×G2)

d(u, v)xdu+dv =
∑

{u1,v1}⊂V (G1)
u2=v2∈V (G2)

d(u1, v1)x
du1+dv1+2du2

+
∑

{u2,v2}⊂V (G2)
u1=v1∈V (G1)

d(u2, v2) x
du2+dv2+2du1 +

∑
{(u1,u2),(v1,v2)}⊂V (G1×G2)

u1 ̸=v1,u2 ̸=v2)

d(u, v)xdu+dv

=
∑

u2∈V (G2)

(x2)du2
∑

{u1,v1}⊂V (G1)

d(u1, v1)x
du1+dv1 +

∑
u1∈V (G1)

(x2)du1
∑

{u2,v2}⊂V (G2)

d(u2, v2) x
du2+dv2

+
∑

{(u1,u2),(v1,v2)}⊂V (G1×G2)
u1 ̸=v1,u2̸=v2)

d(u, v)xdu+dv
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= SG2(x
2)F(G1, x) + SG1(x

2)F(G2, x) +
∑

{(u1,u2),(v1,v2)}⊂V (G1×G2)
u1 ̸=v1,u2 ̸=v2)

d(u, v)xdu+dv .

Since the graph G1 × G2 is connected, for each u, v ∈ V (G1 × G2) such that u =

(u1, u2), v = (v1, v2) and u1 ̸= v1, u2 ̸= v2, we consider the path (u1, u2) → (v1, u2) →

(v1, v2) . Therefore,∑
{(u1,u2),(v1,v2)}⊂V (G1×G2)

u1 ̸=v1,u2̸=v2)

d(u, v)xdu+dv =
∑

{(u1,u2),(v1,v2)}⊂V (G1×G2)
u1 ̸=v1,u2 ̸=v2)

[
d(u1, v1) + d(u2, v2)

]
xdu1+dv1+du2+dv2

=
∑

{(u1,u2),(v1,v2)}⊂V (G1×G2)
u1 ̸=v1,u2̸=v2)

d(u1, v1) x
du1+dv1+du2+dv2

+
∑

{(u1,u2),(v1,v2)}⊂V (G1×G2)
u1 ̸=v1,u2̸=v2)

d(u2, v2) x
du1+dv1+du2+dv2

= 2
∑

{u2,v2}⊂V (G2)

xdu2+dv2
∑

{u1,v1}⊂V (G1)

d(u1, v1)x
du1+dv1

+ 2
∑

{u1,v1}⊂V (G1)

xdu1+dv1
∑

{u2,v2}⊂V (G2)

d(u2, v2)x
du2+dv2

= 2
[
K(G2, x)F(G1, x) +K(G1, x)F(G2, x)

]
.

From the two above relations, Eq. (2.6) follows straightforwardly.

Corollary 2.12. [24] Using the same notation as in Theorem 2.4, the Wiener indices

of G1 +G2, G1[G2], and G1 ×G2 are given by:

W (G1 +G2) = 2

(
p1
2

)
+ 2

(
p2
2

)
+ p1p2 − (q1 + q2)

W (G1[G2]) = p1

[
2

(
p2
2

)
− q2

]
+p2

2W (G1)

W (G1 ×G2) = p2
2W (G1) + p1

2W (G2) .
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[22] N. Trinajstić, S. Nikolić, A. Miličević, I. Gutman, On Zagreb indices, Kem. Ind.

59 (2010) 577–589 (in Croatian).

[23] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem.

Soc. 69 (1947) 17–20.

[24] Y. N. Yeh, I. Gutman, On the sum of all distances in composite graphs, Discr.

Math. 135 (1994) 359–365.


