Kragujevac J. Sci. 35 (2013) 49-60 UDC 541.27:541.61

MINIMUM GENERALIZATION DEGREE DISTANCE OF
n-VERTEX UNICYCLIC AND BICYCLIC GRAPHS

A. Hamzeh, S. Hossein—Zadeh, A. Iranmanesh!

Department of Mathematics, Faculty of Mathematical Sciences,
Tarbiat Modares University, P. O. Box 14115-137, Tehran, Iran

(Received May 16, 2012)

ABSTRACT. In [10] we introduced a generalization of degree distance of graphs as a new
topological index. In this paper, we characterize the n-vertex unicyclic and bicyclic graphs
which have the minimum generalization degree distance.

1 Introduction

Topological indices and graph invariants based on the distances between the vertices
of a graph are widely used in theoretical chemistry to establish relations between
the structure and the properties of molecules. They provide correlations with phys-
ical, chemical and thermodynamic parameters of chemical compounds [5,19]. The
Wiener index is a well-known topological index which equal to the sum of distances
between all pairs of vertices of a molecular graph [22]. It is used to describe molecular
branching and cyclicity and establish correlations with various parameters of chem-
ical compounds. In this paper, we only consider simple and connected graphs. Let
G be a connected graph with the vertex and edge sets V(G) and E(G), respectively
and the number of vertices and edges of G are denoted respectively by n and m. As

usual, the distance between the vertices v and v of G is denoted by dg(u,v) (d(u,v)
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for short). It is defined as the length of a minimum path connecting them. We let
di(v) be the degree of a vertex v in G. The eccentricity denoted by e(v) that is the
maximum distance from vertex v to any other vertex. The diameter of a graph G is
denoted by diam(G) and is the maximum eccentricity over all vertices in a graph G.
A connected graph G with n vertices and m edges is called unicyclic if m = n; G is
called bicyclic if m = n + 1. The join G = G; 4+ G5 of two graphs G; and G5 with
disjoint vertex sets V; and V5 and edge sets Fy and FEj is the graph union G U Go
together with all the edges joining V; and V5.
Additively weighted Harary index defined as follows in [1].

Hy(G)= > d'(u,v)(da(u) + da(v)).

{u}V(G)

There are two papers [6,7], which introduced a new graph invariant with the name

degree distance. It is defined as follows:

DG = > duwv)(de(u)+dg (v)).

{uw}CV(G)

The first Zagreb index was originally defined as M;(G) = > ,cv (g de(u)? [8]. This
index can be also expressed as a sum over edges of G, i.e., M;(G) = ZuveE(G) [de(u)+
dc(v)]. We refer the reader to [17] for the proof of this fact and for more information
on Zagreb index. Generalization of degree distance denoted by H)(G) and defined as
follows in [10].

For every vertex x, Hy(z) is defined by Hy(z) = D*(z)dg(x), where D*(z) =
> eV (a) d*(z,y), and to avoid confusion,we show H,(r) in graph G, with Hy(z,G).

So we have:

H\(G)= Y H(x)= Y DMa)delx)= Y d(u.v)(ds(u)+da(v)),

zeV(G) zeV(G) {u,v}CV(G)
where A is a real number. If A = 0, then H)(G) = 4m. Since for A\ = 1, this new
topological index (H)(G)) is equal to degree distance (or Schultz index), there are
many papers for study this topological index. For example see [4,12,20,21], and also
if A = —1, then H)\(G) = H(G). Therefore the study of this new topological index

is important and we try obtain some new results related to this topological index.
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Throughout this paper, C,, K, and K ,_; denote the cycle, complete and star
graphs on n vertices respectively. Our other notations are standard and taken mainly
from [5,9,19].

Extremal graph theory is a branch of the mathematical field of graph theory. Ex-
tremal graph theory studies extremal (maximal or minimal) graphs which satisfy a
certain property. Extremality can be taken with respect to different graph invariants,
such as order, size or girth. The problem of determining extremal values and corre-
sponding extremal graphs of some graph invariants is the topic of several papers for
example see [2-4,12,14,15,20,21]. In [23], the authors compared the energy of two
unicyclic molecular graphs.

In this paper, we characterize all of n-vertex unicyclic and bicyclic graphs which

have the minimum generalization degree distance.

2 Main Results

It is well known, that natural numbers d; > dy > ... > d, > 1 are the degrees of
the vertices of a tree if and only if " | d; = 2n — 2, [16,18]. The next two lemmas

characterize connected unicyclic and bicyclic graphs by their degree sequence.

Lemma 2.1. [20] Let n > 3 and G be a n-vertex unicyclic graph. The integers
dy >dy > ... >d, > 1 are the degrees of the vertices of a graph G if and only if
(1) 22y di = 2n,

(ii) at least three of them are greater than or equal to 2.

Lemma 2.2. [20] Let n > 4 and G be a n-vertex bicyclic graph. The integers
dy >dy > ... >d, > 1 are the degrees of the vertices of a graph G if and only if

(i) iy di = 2n+ 2,

(ii) at least four of them are greater than or equal to 2,

(ifi) dy < n — 1.

Let z; be the number of vertices of degree ¢ of G, for 1 <i <n—1. If dg(v) =k,

then

DMv)= > dMu,v) = Yoo Ao+ D dNuw)

ueV(G) ueV(G),d(u,v)=1 ueV(G),d(u,v)>2
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> k+2(n—k—1)

= 2%n—k(2* - 1) - 24,

SO
Hy\(G) = Y da(v)Dv)
veV(Q)
n—1
> Y kzp(2n— k(2 —1) - 2%).
k=1
We define
n—1
Fy(x1, 2, 1) = > kzp(2n — k() — 1) = 2Y).
k=1
We obtain the minimum of Fy(zy, xs, ..., x,_1) over all integers numbers
1, %2, ...,Ty_1 > 0 which satisfy one of the conditions of Lemmas 2.1 and 2.2.

Rewriting Lemmas 2.1 and 2.2 in terms of the above notations, as follows:

Corollary 2.3. [20] Let n > 3 and G be a n-vertex unicyclic graph. The integers
x1,To,...,Ty_1 > 0 are the multiplicities of the degrees of a graph G if and only if
(i) 205 @i =,

(i) Yo iy = 2n,

(iii) =y <n —3.

We denote the set of all vectors (x1,...,x,_1) which satisfy the above conditions

by Bl.

Corollary 2.4. [20] Let n > 4 and G be a n-vertex bicyclic graph. The integers
T1,%a,...,Ty_1 > 0 are the multiplicities of the degrees of a graph G if and only if
(i) Z;:ll Ly =M,

(i) S0 iy = 2n + 2,

(ili) 1 <n —4.

We denote the set of all vectors (z1, ..., x,_1) which satisfy the above conditions

by BQ.

Let G be a connected graph with multiplicities of the degrees (x1,...,x,_1) and
letm >2,p>0 m+p<n-2 2, >1and 2,4, > 1. Now we consider the

transformation of ¢; which defined as follows [20]:
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t(z1, .. xn1) = (2),...,2 1)

= (1, T+ L, — 1 Ty — L T + Lo D).

We have o = z; for i ¢ {m — 1,mm+pm+p+1} and 2, | = Tp_1 + 1,
T =T — 1, 2 = Ty — L, 2, = Ty + 1
Let 2 <m < n-—2, x,, > 2. Now consider the transformation ¢, defined as

follows [20]:

to(x1, . xmy) = (2f,. ., 20 4)

= (1, Tmaa+ LT — 2,21 + 1. 20 1),

That is o} = z; for i ¢ {m —1,m,m+ 1} and 2}, | = 1 + 1, 2, = zp, — 2,
T = Tmgr + 1.
Lemma 2.5. Suppose that A is a positive integer number and consider the set of
vectors (xy,...,T,_1).
1) If (x1,...,24-1) € By, then t1(zq,...,2,_1) € By unless m =2 and x; = n — 3,
2) If (z1,...,2n_1) € Bo, then ty(x1,...,2,_1) € By unless m = 2 and =1 = n — 4,

3) F)\(tl(l’l,mg,. .. 71771—1)) < F)\(l’l,l'g,. .. 7?[7”_1).

Proof. (1) We can easily see that S0 e, = S0, S iy = S0 it If
m =2, x1 = n — 3, then 2; > n — 3, and in this case t;(z1,...,2,-1) ¢ B;. Now
if 2§ > n — 3, according to 1 < n — 3, we have m = 2 and x; = n — 3. Therefore,
we conclude that if (z1,...,2,_1) € By, then 2f > n — 3 if and only if m = 2 and
Ty =n—3.

(2) With a similar argument, if (z1,...,2,-1) € Bs, then ) > n — 4 if and only if
m=2and x;y =n — 4.

(3) With a simple calculation we have:

F/\(Z’l,l'Q,...,l’n_l)—F)\(tl(l’l,l’g,...,xn_l)) = (2)\—1)(2p+2)

> 0.
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The proof is now completed. U

Lemma 2.6. Suppose that \ is a positive integer number and consider the set of
vectors (Zq,...,Tp_1).

1) If (z1,...,2,-1) € By, then to(xq,...,2,-1) € By unless m = 2 and x; = n — 3,

2) If (x1,...,2p-1) € Bsg, then to(z1,...,2,-1) € By unless m = 2 and x; = n — 4,

3) F)\(t2<l'1, To, ... ,.Tnfl)) < F)\<£L'1, To, ... ,.Tnfl).
Proof. The proof is similar to the proof of the previous lemma, by taking p = 0. [

Theorem 2.7. Let n > 3 and A be a positive integer number. If GG is belong to the

classes of connected unicyclic graphs with n vertex, then we have:
min H,(G) = 2*(n* —n — 6) + (n®> — n +6),
and the unique extremal graph is K, ; + e where e € E(K;,_1).

Proof. To find minimum H,(G), over the classes of connected unicyclic graphs with
n vertex, it is enough to find ming, 4, . 2, 1)e, Fa(@1, T2, ..., Tp1). At first, we
consider the case n = 3. In this case only unicyclic graph with 3 vertices is C3, that
Hy(C3) =12 = 6(3), where 6(n) = 2*(n*—n—6)+(n?—n+6), moreover C3 = K; 5+e
where e € F(K) ) and the theorem is proved in this case. O
Now let n > 4. If z,,_1 > 2, consider two different vertices x,y € V(G) such that
dg(r) = dg(y) = n— 1. Since n > 4, we can choose two different vertices z,t €
V(G) —{x,y}. We have xy,xz,zt,yz,yt € E(G), hence graph G has at least two
cycles z,y, z, x and z,y,t, z, which contradicts the hypothesis. Therefore z,,_; < 1.
Let us analyze the possible values for x3,...,x,_o in the case of minimum. If

there exist 3 < ¢ < j < n — 2 such that ; > 1 and z; > 1, then by applying

t, for the positions ¢ and j, we obtain a new vector («},...,z),_,) € By such that
P2,z ... 2l ) < Fa(z1,29,...,2T,—1). Similarly, if there exists 3 < i < n —2

such that x; > 2, then by ¢y we obtain a new degree sequence in B; such that
P2,z ...l ) < Fax(x1,29,...,2,-1). Two remaining cases are (a) x5 = x4 =

- = Zp_o = 0 and (b) there is only one index 7, 3 < ¢ < n — 2 such that z; = 1
and xp = 0 for all 3 < k < n — 2k # i. In follow, we prove that, the minimum of

F\(x1,xs,...,x,_1) does not occur in case (b). Let x5 = 0, with considering the case
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(b), we have =y + x,_1 =n — 1. Since z,_; < 1, if z,,_; = 0, then x; = n — 1 and if
Zp—1 = 1, then 21 = n — 2, but both of them is inconsistent with condition (iii) from
Corollary 2.3, so x5 > 1. Let x; > n — 4. By applying conditions (i) and (iii) from
Corollary 2.3, we have 1 = n—3, n—3+z2+1+x,_1 = n. Now by applying condition
(ii) from Corollary 2.3, we obtain n — 3 4+ 2z5 + i + (n — 1)x,_1 = 2n, or equivalent
n+44(i—3)+ (n—3)x,—1 = 2n, by the fact that ¢ > 3 leads to (n —3)x,—; <n—4.
If z,_1 = 0, then x5 = 2 and we deduce i = n — 1,that is a contradiction. If x, 1 =1,

then x5 = 1 and we deduce i = 2, that is a contradiction. Finally, 1 < n—4 and now it

is possible to apply ¢; for positions 2 and i, obtaining a new vector (z,...,2!,_;) € By
for which Fy (2, 2%, ...,20,_1) < Fx(x1,22,...,2,-1). Therefore case (b) is not hold
and therefore case (a) holds, thus implying 3 = -+ - = z,,_o = 0. The degree sequence

at this point is (z1,9,0,...,0,2, 1) with x, 1 € {0,1}. Let us consider the case
Tp_1 = 0. We have x1 + x5 = n and x| + 225 = 2n, implying that o = n and z; = 0.
In this case, (0,n,0,...,0) cannot be a point of minimum in B; since transformation ¢,
can be applied to this vector. The remaining case is z,,_1 = 1. Conditions (i) and (ii)
of Corollary 2.3 imply that xo = 2 and 1 = n—3. It follows that F\(xy,za,..., 2y 1)
is minimum if and only if 2y =n — 3,29 = 2,23 =--- =2, o = 0,2,_1 = 1 and the
corresponding graph is K, + e where e € E(K;,,_;). Hence,
min H,(G) > min Fy(z1,29,...,2p-1)
(z1,22,...,xn—1)EB1
= F\(n—3,2,0,...,0,1)
= 2*n*—n—6)+ (> —n+6)

= H\(Kin-1+e)

and the proof is completed. 0

In [20], the authors proved that the following Theorem.

Theorem 2.8. For every n > 3 we have
min D'(G) = 3n* — 3n — 6,

that G is belong to the classes of connected unicyclic graphs with n vertex and the

unique extremal graph is K ,_1 +e.
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If we choose A = 1 in Theorem 2.7, then we can obtain the same result (Theorem

3.1 in [20]).

Theorem 2.9. Let n > 4 and A be a positive integer. If GG is belong to the classes

of connected bicyclic graphs with n vertex, then we have:
min H,(G) = 2*(n* +n — 16) + (n* — n + 14),

the extremal graph is unique and obtained from K ,_; by adding two edges having

a common extremity.

Proof. To find minimum H,(G), over the classes of connected bicyclic graphs with
n vertex, it is enough to find ming, 4, . 2, 1)eB, FA(®1, T2, ..., Tp1). At first, we
consider the case n = 4. In this case only bicyclic graph with 4 vertices is Cy + e,
that Hy(Cy + e) = 26 + 4.2* = 0(4), where 0(n) = 2*(n? + n — 16) + (n®> — n + 14),
and the theorem is proved in this case.

Now let n > 5. Similar to the proof of the previous Theorem, we have, z, 1 < 1.

Similarly, on positions 4, ..., n—2, we cannot have two values greater than or equal to
1 or one value greater than or equal to 2. Let us show that all vectors (x1,...,x,_1) €
B, realizing the minimum of F) have x4y = x5 =--- =2, 5 = 0.

Let there exist 4 <i <m—2such that z; = land zy =0fork #¢,4 <k <n-—2.
In this case, if x3 > 1, then by applying t; for the positions ¢ and 3, we obtain a
new vector (z,...,x)_;) € By such that F(x, 25, ..., 2, _1) < F\(z1,%2,...,Tp_1).
Let x3 = 0, since z,_1 € {0,1}, we consider two cases, (a) z,-1 = 1 and (b)
Tp—1 = 0. In case (a), for i > 4, we have z,_1 = z; = 1. We can consider dif-
ferent vertices z,y,u,v,w € V(G) such that dg(x) = n—1 > 4,dg(y) = i > 4,
xy, ru, xU, Tw, yu, yv, yw € E(G). We have found three linearly independent cycles
x,y,u,T; T,Y,v,T; T,y,w,r, which contradicts the hypothesis about G. In case (b),
if x,,_1 = 0, then with conditions B,, we have, x1 +x9 =n—1, 1+ 225 +1=2n+2
and 1 < n —4. We deduce that vy =71 —4 <n—-6and 29 = n+3—1¢ > 1.
In this case we can apply t; for positions 2 and ¢ and deduce a smaller value for
F. Therefore, zy = 25 = -+ = x,90 = 0, x,_1 € {0,1}. If z,_; = 0, then
X1+ o =n — x3, T1 + 209 = 2n + 2 — 3z3, therefore 3 > 2. By applying ¢, for the

position 3, we obtain a smaller value for Fy. If x,,_1 =1, then 21 + 29 + x3 =n — 1,
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x1+2x9+3x3 =n+3. If x3 = 0 we obtain (n—15,4,0,...,0,1) € By and if z3 = 1 we
get (n—4,2,1,0,...,0,1) € By. But (n—4,2,1,0,...,0,1) =t3(n—>5,4,0,...,0,1).
It follows that F)\(z1, s, ..., Z,—_1) is minimum in By if and only if 2y = n—4, xo = 2,
3 =124 =+ =a,_9=0and z,_1 = 1. The corresponding graph is K;,_1 + 2e,
where the additional edges have a common extremity. This graph has also diameter
2. As in Theorem 2.7, we have:
min H,(G) > ($1,$2,-1-/-I};£1—1)EB2 Fy(z1,29,...,2p_1)
= F\(n—4,2,1,0,...,0,1)
= 2*(n*+n—16) + (n* —n + 14)

= H)\(Kl,n—l + 26)

and the proof is completed. 0

In [20], the authors proved that the following Theorem.

Theorem 2.10. For every n > 4 we have
min D'(G) = 3n® +n — 18,

that G is belong to the classes of connected bicyclic graphs with n vertex. The
extremal graph is unique and obtained from K ,_; by adding two edges having a
common extremity.

If we choose A = 1 in Theorem 2.9, then we can obtain the same result (Theorem

3.2 in [20]).

Let K,” be the graph obtained by attaching p pendent edges to a vertex of K,,_,,.
We first bring the following results in [11,13].

Lemma 2.11. [13] Let G be an n-vertex connected graph with p pendent vertices.
Then M;(G) < n® — (3p—1)n? + (3p* + 6p + 1)n — p> — 3p? — 2p — 1, the equality is
hold if and only if G = K,*.

Lemma 2.12. [10] Let G be a connected graph of order n > 2 and size m > 1 and A
be a negative integer. Then Hy(G) < (1 —2*)M(G) + 2 mn — 2 m and equality
is hold if and only if d < 2, where d is the diameter of G.
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Lemma 2.13. [13] Let G be a connected graph with at least three vertices and A be
a negative integer. If G is not isomorphic to K, then H)(G) < H\(G + €), where

e € E(G).
Theorem 2.14. Let G be an n-vertex connected graph with p pendent vertices.
Then
Hy(G) < n*—=@p—-1)n*+Bp* +6p+1)n—p°—3p*—2p—1
4+ 28(=3n? — 2p®n — Snp + 2 + 3pn® + p* + 1 — p) + 22 (2np — n?p),
the equality is hold if and only if G = K,”.

Proof. Since G is an n-vertex connected graph with p pendent vertices, then the

% and we know

maximum number of edges in the graph G is equal to p +

that the graph K,” has p + w edges. By the above lemmas, we have:

H\(G)

IN

(1 =2MMy(G) + 22X mn — 22 m
< nP—Bp—-1Dn*+Bp*+6p+1)n—p* —3p* —2p—1

4+ 2M(=3n% — 2p®n — 5np + 2p* + 3pn? 4+ p* + 1 — p) + 22X (2np — n?p),

The first equality holds if and only if the diameter of GG is at most 2 and the second
one holds if and only if G = K,”. Note that K,” has diameter 2. So, the equality is
hold if and only if G = K,,». This completes the proof. O

A vertex subset S of a graph G is said to be an independent set of G, if the
subgraph induced by S is an empty graph. Then f =max{|S]| : S is an independent
set of G} is said to be the independence number of G. A clique of a graph is a

maximal complete subgraph.

Theorem 2.15. Let G be an n-vertex connected graph with independence number
and \ be a negative integer. Then H,(G) < (n—8)(nfB— 8%+ (n—1)>+ 2% - B)),
and the equality is hold if and only if G = K, + K,,_s.

Proof. Let G be a graph chosen among all n-vertex connected graphs with indepen-
dence number 5 such that G has the largest H)(G). Let S be a maximal independent

set in G with |S| = 8. Since adding edges into a graph will increase its Hy(G) by
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Lemma 2.13, the subgraph induced by vertices in G — S is a clique in GG, moreover

each vertex = in S is adjacent to every vertex y in G — S, then G = K, + K,,_3. An
elementary calculation gives Hy(G) < (n — 8)(nf — B2 + (n — 1)2 + 2*(8* — 3)), and

the proof is completed. 0
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