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ABSTRACT. In [10] we introduced a generalization of degree distance of graphs as a new

topological index. In this paper, we characterize the n-vertex unicyclic and bicyclic graphs

which have the minimum generalization degree distance.

1 Introduction

Topological indices and graph invariants based on the distances between the vertices

of a graph are widely used in theoretical chemistry to establish relations between

the structure and the properties of molecules. They provide correlations with phys-

ical, chemical and thermodynamic parameters of chemical compounds [5, 19]. The

Wiener index is a well-known topological index which equal to the sum of distances

between all pairs of vertices of a molecular graph [22]. It is used to describe molecular

branching and cyclicity and establish correlations with various parameters of chem-

ical compounds. In this paper, we only consider simple and connected graphs. Let

G be a connected graph with the vertex and edge sets V (G) and E(G), respectively

and the number of vertices and edges of G are denoted respectively by n and m. As

usual, the distance between the vertices u and v of G is denoted by dG(u, v) (d(u, v)
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for short). It is defined as the length of a minimum path connecting them. We let

dG(v) be the degree of a vertex v in G. The eccentricity denoted by ε(v) that is the

maximum distance from vertex v to any other vertex. The diameter of a graph G is

denoted by diam(G) and is the maximum eccentricity over all vertices in a graph G.

A connected graph G with n vertices and m edges is called unicyclic if m = n; G is

called bicyclic if m = n + 1. The join G = G1 + G2 of two graphs G1 and G2 with

disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the graph union G1 ∪ G2

together with all the edges joining V1 and V2.

Additively weighted Harary index defined as follows in [1].

HA(G) =
∑

{u,v}⊆V (G)

d−1(u, v)(dG(u) + dG(v)).

There are two papers [6, 7], which introduced a new graph invariant with the name

degree distance. It is defined as follows:

D′ (G) =
∑

{u,v}⊆V (G)

d (u, v) (dG (u)+dG (v)).

The first Zagreb index was originally defined as M1(G) =
∑

u∈V (G) dG(u)
2 [8]. This

index can be also expressed as a sum over edges of G, i.e., M1(G) =
∑

uv∈E(G)[dG(u)+

dG(v)]. We refer the reader to [17] for the proof of this fact and for more information

on Zagreb index. Generalization of degree distance denoted by Hλ(G) and defined as

follows in [10].

For every vertex x, Hλ(x) is defined by Hλ(x) = Dλ(x)dG(x), where Dλ(x) =∑
y∈V (G) d

λ(x, y), and to avoid confusion,we show Hλ(x) in graph G, with Hλ(x,G).

So we have:

Hλ(G) =
∑

x∈V (G)

Hλ(x) =
∑

x∈V (G)

Dλ(x)dG(x) =
∑

{u,v}⊆V (G)

dλ(u, v)(dG(u) + dG(v)),

where λ is a real number. If λ = 0, then Hλ(G) = 4m. Since for λ = 1, this new

topological index (Hλ(G)) is equal to degree distance (or Schultz index), there are

many papers for study this topological index. For example see [4,12,20,21], and also

if λ = −1, then Hλ(G) = HA(G). Therefore the study of this new topological index

is important and we try obtain some new results related to this topological index.
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Throughout this paper, Cn, Kn and K1,n−1 denote the cycle, complete and star

graphs on n vertices respectively. Our other notations are standard and taken mainly

from [5,9, 19].

Extremal graph theory is a branch of the mathematical field of graph theory. Ex-

tremal graph theory studies extremal (maximal or minimal) graphs which satisfy a

certain property. Extremality can be taken with respect to different graph invariants,

such as order, size or girth. The problem of determining extremal values and corre-

sponding extremal graphs of some graph invariants is the topic of several papers for

example see [2–4, 12, 14, 15, 20, 21]. In [23], the authors compared the energy of two

unicyclic molecular graphs.

In this paper, we characterize all of n-vertex unicyclic and bicyclic graphs which

have the minimum generalization degree distance.

2 Main Results

It is well known, that natural numbers d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 are the degrees of

the vertices of a tree if and only if
∑n

i=1 di = 2n − 2, [16, 18]. The next two lemmas

characterize connected unicyclic and bicyclic graphs by their degree sequence.

Lemma 2.1. [20] Let n ≥ 3 and G be a n-vertex unicyclic graph. The integers

d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 are the degrees of the vertices of a graph G if and only if

(i)
∑n

i=1 di = 2n,

(ii) at least three of them are greater than or equal to 2.

Lemma 2.2. [20] Let n ≥ 4 and G be a n-vertex bicyclic graph. The integers

d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 are the degrees of the vertices of a graph G if and only if

(i)
∑n

i=1 di = 2n+ 2,

(ii) at least four of them are greater than or equal to 2,

(iii) d1 ≤ n− 1.

Let xi be the number of vertices of degree i of G, for 1 ≤ i ≤ n− 1. If dG(v) = k,

then

Dλ(v) =
∑

u∈V (G)

dλ(u, v) =
∑

u∈V (G),d(u,v)=1

dλ(u, v) +
∑

u∈V (G),d(u,v)≥2

dλ(u, v)



52

≥ k + 2λ(n− k − 1)

= 2λn− k(2λ − 1)− 2λ,

so

Hλ(G) =
∑

v∈V (G)

dG(v)D
λ(v)

≥
n−1∑
k=1

kxk(2
λn− k(2λ − 1)− 2λ).

We define

Fλ(x1, x2, . . . , xn−1) =
n−1∑
k=1

kxk(2
λn− k(2λ − 1)− 2λ).

We obtain the minimum of Fλ(x1, x2, . . . , xn−1) over all integers numbers

x1, x2, . . . , xn−1 ≥ 0 which satisfy one of the conditions of Lemmas 2.1 and 2.2.

Rewriting Lemmas 2.1 and 2.2 in terms of the above notations, as follows:

Corollary 2.3. [20] Let n ≥ 3 and G be a n-vertex unicyclic graph. The integers

x1, x2, . . . , xn−1 ≥ 0 are the multiplicities of the degrees of a graph G if and only if

(i)
∑n−1

i=1 xi = n,

(ii)
∑n−1

i=1 ixi = 2n,

(iii) x1 ≤ n− 3.

We denote the set of all vectors (x1, . . . , xn−1) which satisfy the above conditions

by B1.

Corollary 2.4. [20] Let n ≥ 4 and G be a n-vertex bicyclic graph. The integers

x1, x2, . . . , xn−1 ≥ 0 are the multiplicities of the degrees of a graph G if and only if

(i)
∑n−1

i=1 xi = n,

(ii)
∑n−1

i=1 ixi = 2n+ 2,

(iii) x1 ≤ n− 4.

We denote the set of all vectors (x1, . . . , xn−1) which satisfy the above conditions

by B2.

Let G be a connected graph with multiplicities of the degrees (x1, . . . , xn−1) and

let m ≥ 2, p > 0, m + p ≤ n − 2, xm ≥ 1 and xm+p ≥ 1. Now we consider the

transformation of t1 which defined as follows [20]:
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t1(x1, . . . , xn−1) = (x′
1, . . . , x

′
n−1)

= (x1, . . . , xm−1 + 1, xm − 1, . . . , xm+p − 1, xm+p+1 + 1, . . . , xn−1).

We have x′
i = xi for i /∈ {m − 1,m,m + p,m + p + 1} and x′

m−1 = xm−1 + 1,

x′
m = xm − 1, x′

m+p = xm+p − 1, x′
m+p+1 = xm+p+1 + 1.

Let 2 ≤ m ≤ n − 2, xm ≥ 2. Now consider the transformation t2 defined as

follows [20]:

t2(x1, . . . , xn−1) = (x′
1, . . . , x

′
n−1)

= (x1, . . . , xm−1 + 1, xm − 2, xm+1 + 1 . . . , xn−1).

That is x′
i = xi for i /∈ {m − 1,m,m + 1} and x′

m−1 = xm−1 + 1, x′
m = xm − 2,

x′
m+1 = xm+1 + 1.

Lemma 2.5. Suppose that λ is a positive integer number and consider the set of

vectors (x1, . . . , xn−1).

1) If (x1, . . . , xn−1) ∈ B1, then t1(x1, . . . , xn−1) ∈ B1 unless m = 2 and x1 = n− 3,

2) If (x1, . . . , xn−1) ∈ B2, then t1(x1, . . . , xn−1) ∈ B2 unless m = 2 and x1 = n− 4,

3) Fλ(t1(x1, x2, . . . , xn−1)) < Fλ(x1, x2, . . . , xn−1).

Proof. (1) We can easily see that
∑n−1

i=1 xi =
∑n−1

i=1 x′
i,

∑n−1
i=1 ixi =

∑n−1
i=1 ix′

i. If

m = 2, x1 = n − 3, then x′
1 > n − 3, and in this case t1(x1, . . . , xn−1) /∈ B1. Now

if x′
1 > n − 3, according to x1 ≤ n − 3, we have m = 2 and x1 = n − 3. Therefore,

we conclude that if (x1, . . . , xn−1) ∈ B1, then x′
1 > n − 3 if and only if m = 2 and

x1 = n− 3.

(2) With a similar argument, if (x1, . . . , xn−1) ∈ B2, then x′
1 > n − 4 if and only if

m = 2 and x1 = n− 4.

(3) With a simple calculation we have:

Fλ(x1, x2, . . . , xn−1)− Fλ(t1(x1, x2, . . . , xn−1)) = (2λ − 1)(2p+ 2)

> 0.
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The proof is now completed. �

Lemma 2.6. Suppose that λ is a positive integer number and consider the set of

vectors (x1, . . . , xn−1).

1) If (x1, . . . , xn−1) ∈ B1, then t2(x1, . . . , xn−1) ∈ B1 unless m = 2 and x1 = n− 3,

2) If (x1, . . . , xn−1) ∈ B2, then t2(x1, . . . , xn−1) ∈ B2 unless m = 2 and x1 = n− 4,

3) Fλ(t2(x1, x2, . . . , xn−1)) < Fλ(x1, x2, . . . , xn−1).

Proof. The proof is similar to the proof of the previous lemma, by taking p = 0. �

Theorem 2.7. Let n ≥ 3 and λ be a positive integer number. If G is belong to the

classes of connected unicyclic graphs with n vertex, then we have:

minHλ(G) = 2λ(n2 − n− 6) + (n2 − n+ 6),

and the unique extremal graph is K1,n−1 + e where e ∈ E(K̄1,n−1).

Proof. To find minimum Hλ(G), over the classes of connected unicyclic graphs with

n vertex, it is enough to find min(x1,x2,...,xn−1)∈B1 Fλ(x1, x2, . . . , xn−1). At first, we

consider the case n = 3. In this case only unicyclic graph with 3 vertices is C3, that

Hλ(C3) = 12 = θ(3), where θ(n) = 2λ(n2−n−6)+(n2−n+6), moreover C3 = K1,2+e

where e ∈ E(K̄1,2) and the theorem is proved in this case. �
Now let n ≥ 4. If xn−1 ≥ 2, consider two different vertices x, y ∈ V (G) such that

dG(x) = dG(y) = n − 1. Since n ≥ 4, we can choose two different vertices z, t ∈

V (G)− {x, y}. We have xy, xz, xt, yz, yt ∈ E(G), hence graph G has at least two

cycles x, y, z, x and x, y, t, x, which contradicts the hypothesis. Therefore xn−1 ≤ 1.

Let us analyze the possible values for x3, . . . , xn−2 in the case of minimum. If

there exist 3 ≤ i < j ≤ n − 2 such that xi ≥ 1 and xj ≥ 1, then by applying

t1 for the positions i and j, we obtain a new vector (x′
1, . . . , x

′
n−1) ∈ B1 such that

Fλ(x
′
1, x

′
2, . . . , x

′
n−1) < Fλ(x1, x2, . . . , xn−1). Similarly, if there exists 3 ≤ i ≤ n − 2

such that xi ≥ 2, then by t2 we obtain a new degree sequence in B1 such that

Fλ(x
′
1, x

′
2, . . . , x

′
n−1) < Fλ(x1, x2, . . . , xn−1). Two remaining cases are (a) x3 = x4 =

· · · = xn−2 = 0 and (b) there is only one index i, 3 ≤ i ≤ n − 2 such that xi = 1

and xk = 0 for all 3 ≤ k ≤ n − 2, k ̸= i. In follow, we prove that, the minimum of

Fλ(x1, x2, . . . , xn−1) does not occur in case (b). Let x2 = 0, with considering the case
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(b), we have x1 + xn−1 = n− 1. Since xn−1 ≤ 1, if xn−1 = 0, then x1 = n− 1 and if

xn−1 = 1, then x1 = n− 2, but both of them is inconsistent with condition (iii) from

Corollary 2.3, so x2 ≥ 1. Let x1 > n − 4. By applying conditions (i) and (iii) from

Corollary 2.3, we have x1 = n−3, n−3+x2+1+xn−1 = n. Now by applying condition

(ii) from Corollary 2.3, we obtain n − 3 + 2x2 + i + (n − 1)xn−1 = 2n, or equivalent

n+4+(i−3)+(n−3)xn−1 = 2n, by the fact that i ≥ 3 leads to (n−3)xn−1 ≤ n−4.

If xn−1 = 0, then x2 = 2 and we deduce i = n−1,that is a contradiction. If xn−1 = 1,

then x2 = 1 and we deduce i = 2, that is a contradiction. Finally, x1 ≤ n−4 and now it

is possible to apply t1 for positions 2 and i, obtaining a new vector (x′
1, . . . , x

′
n−1) ∈ B1

for which Fλ(x
′
1, x

′
2, . . . , x

′
n−1) < Fλ(x1, x2, . . . , xn−1). Therefore case (b) is not hold

and therefore case (a) holds, thus implying x3 = · · · = xn−2 = 0. The degree sequence

at this point is (x1, x2, 0, . . . , 0, xn−1) with xn−1 ∈ {0, 1}. Let us consider the case

xn−1 = 0. We have x1 + x2 = n and x1 +2x2 = 2n, implying that x2 = n and x1 = 0.

In this case, (0, n, 0, ..., 0) cannot be a point of minimum in B1 since transformation t2

can be applied to this vector. The remaining case is xn−1 = 1. Conditions (i) and (ii)

of Corollary 2.3 imply that x2 = 2 and x1 = n−3. It follows that Fλ(x1, x2, . . . , xn−1)

is minimum if and only if x1 = n− 3, x2 = 2, x3 = · · · = xn−2 = 0, xn−1 = 1 and the

corresponding graph is K1,n−1 + e where e ∈ E(K̄1,n−1). Hence,

minHλ(G) ≥ min
(x1,x2,...,xn−1)∈B1

Fλ(x1, x2, . . . , xn−1)

= Fλ(n− 3, 2, 0, . . . , 0, 1)

= 2λ(n2 − n− 6) + (n2 − n+ 6)

= Hλ(K1,n−1 + e)

and the proof is completed. �

In [20], the authors proved that the following Theorem.

Theorem 2.8. For every n ≥ 3 we have

minD′(G) = 3n2 − 3n− 6,

that G is belong to the classes of connected unicyclic graphs with n vertex and the

unique extremal graph is K1,n−1 + e.
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If we choose λ = 1 in Theorem 2.7, then we can obtain the same result (Theorem

3.1 in [20]).

Theorem 2.9. Let n ≥ 4 and λ be a positive integer. If G is belong to the classes

of connected bicyclic graphs with n vertex, then we have:

minHλ(G) = 2λ(n2 + n− 16) + (n2 − n+ 14),

the extremal graph is unique and obtained from K1,n−1 by adding two edges having

a common extremity.

Proof. To find minimum Hλ(G), over the classes of connected bicyclic graphs with

n vertex, it is enough to find min(x1,x2,...,xn−1)∈B2 Fλ(x1, x2, . . . , xn−1). At first, we

consider the case n = 4. In this case only bicyclic graph with 4 vertices is C4 + e,

that Hλ(C4 + e) = 26 + 4.2λ = θ(4), where θ(n) = 2λ(n2 + n − 16) + (n2 − n + 14),

and the theorem is proved in this case.

Now let n ≥ 5. Similar to the proof of the previous Theorem, we have, xn−1 ≤ 1.

Similarly, on positions 4, . . . , n−2, we cannot have two values greater than or equal to

1 or one value greater than or equal to 2. Let us show that all vectors (x1, . . . , xn−1) ∈

B2 realizing the minimum of Fλ have x4 = x5 = · · · = xn−2 = 0.

Let there exist 4 ≤ i ≤ n−2 such that xi = 1 and xk = 0 for k ̸= i, 4 ≤ k ≤ n−2.

In this case, if x3 ≥ 1, then by applying t1 for the positions i and 3, we obtain a

new vector (x′
1, . . . , x

′
n−1) ∈ B2 such that Fλ(x

′
1, x

′
2, . . . , x

′
n−1) < Fλ(x1, x2, . . . , xn−1).

Let x3 = 0, since xn−1 ∈ {0, 1}, we consider two cases, (a) xn−1 = 1 and (b)

xn−1 = 0. In case (a), for i ≥ 4, we have xn−1 = xi = 1. We can consider dif-

ferent vertices x, y, u, v, w ∈ V (G) such that dG(x) = n − 1 ≥ 4, dG(y) = i ≥ 4,

xy, xu, xv, xw, yu, yv, yw ∈ E(G). We have found three linearly independent cycles

x, y, u, x; x, y, v, x; x, y, w, x, which contradicts the hypothesis about G. In case (b),

if xn−1 = 0, then with conditions B2, we have, x1 + x2 = n− 1, x1 +2x2 + i = 2n+2

and x1 ≤ n − 4. We deduce that x1 = i − 4 ≤ n − 6 and x2 = n + 3 − i ≥ 1.

In this case we can apply t1 for positions 2 and i and deduce a smaller value for

Fλ. Therefore, x4 = x5 = · · · = xn−2 = 0, xn−1 ∈ {0, 1}. If xn−1 = 0, then

x1 + x2 = n− x3, x1 + 2x2 = 2n + 2− 3x3, therefore x3 ≥ 2. By applying t2 for the

position 3, we obtain a smaller value for Fλ. If xn−1 = 1, then x1 + x2 + x3 = n− 1,
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x1+2x2+3x3 = n+3. If x3 = 0 we obtain (n−5, 4, 0, . . . , 0, 1) ∈ B2 and if x3 = 1 we

get (n− 4, 2, 1, 0, . . . , 0, 1) ∈ B2. But (n− 4, 2, 1, 0, . . . , 0, 1) = t2(n− 5, 4, 0, . . . , 0, 1).

It follows that Fλ(x1, x2, . . . , xn−1) is minimum in B2 if and only if x1 = n−4, x2 = 2,

x3 = 1, x4 = · · · = xn−2 = 0 and xn−1 = 1. The corresponding graph is K1,n−1 + 2e,

where the additional edges have a common extremity. This graph has also diameter

2. As in Theorem 2.7, we have:

minHλ(G) ≥ min
(x1,x2,...,xn−1)∈B2

Fλ(x1, x2, . . . , xn−1)

= Fλ(n− 4, 2, 1, 0, . . . , 0, 1)

= 2λ(n2 + n− 16) + (n2 − n+ 14)

= Hλ(K1,n−1 + 2e)

and the proof is completed. �

In [20], the authors proved that the following Theorem.

Theorem 2.10. For every n ≥ 4 we have

minD′(G) = 3n2 + n− 18,

that G is belong to the classes of connected bicyclic graphs with n vertex. The

extremal graph is unique and obtained from K1,n−1 by adding two edges having a

common extremity.

If we choose λ = 1 in Theorem 2.9, then we can obtain the same result (Theorem

3.2 in [20]).

Let Kn
p be the graph obtained by attaching p pendent edges to a vertex of Kn−p.

We first bring the following results in [11,13].

Lemma 2.11. [13] Let G be an n-vertex connected graph with p pendent vertices.

Then M1(G) ≤ n3 − (3p− 1)n2 + (3p2 + 6p+ 1)n− p3 − 3p2 − 2p− 1, the equality is

hold if and only if G ∼= Kn
p.

Lemma 2.12. [10] Let G be a connected graph of order n ≥ 2 and size m ≥ 1 and λ

be a negative integer. Then Hλ(G) ≤ (1− 2λ)M1(G)+ 2λ+1mn− 2λ+1m and equality

is hold if and only if d ≤ 2, where d is the diameter of G.
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Lemma 2.13. [13] Let G be a connected graph with at least three vertices and λ be

a negative integer. If G is not isomorphic to Kn, then Hλ(G) < Hλ(G + e), where

e ∈ E(Ḡ).

Theorem 2.14. Let G be an n-vertex connected graph with p pendent vertices.

Then

Hλ(G) ≤ n3 − (3p− 1)n2 + (3p2 + 6p+ 1)n− p3 − 3p2 − 2p− 1

+ 2λ(−3n2 − 2p2n− 5np+ 2p2 + 3pn2 + p3 + 1− p) + 2λ+1(2np− n2p),

the equality is hold if and only if G ∼= Kn
p.

Proof. Since G is an n-vertex connected graph with p pendent vertices, then the

maximum number of edges in the graph G is equal to p + (n−p)(n−p−1)
2

and we know

that the graph Kn
p has p+ (n−p)(n−p−1)

2
edges. By the above lemmas, we have:

Hλ(G) ≤ (1− 2λ)M1(G) + 2λ+1mn− 2λ+1m

≤ n3 − (3p− 1)n2 + (3p2 + 6p+ 1)n− p3 − 3p2 − 2p− 1

+ 2λ(−3n2 − 2p2n− 5np+ 2p2 + 3pn2 + p3 + 1− p) + 2λ+1(2np− n2p),

The first equality holds if and only if the diameter of G is at most 2 and the second

one holds if and only if G ∼= Kn
p. Note that Kn

p has diameter 2. So, the equality is

hold if and only if G ∼= Kn
p. This completes the proof. �

A vertex subset S of a graph G is said to be an independent set of G, if the

subgraph induced by S is an empty graph. Then β =max{|S| : S is an independent

set of G} is said to be the independence number of G. A clique of a graph is a

maximal complete subgraph.

Theorem 2.15. Let G be an n-vertex connected graph with independence number β

and λ be a negative integer. Then Hλ(G) ≤ (n−β)(nβ−β2+(n− 1)2+2λ(β2−β)),

and the equality is hold if and only if G ∼= βK1 +Kn−β.

Proof. Let G be a graph chosen among all n-vertex connected graphs with indepen-

dence number β such that G has the largest Hλ(G). Let S be a maximal independent

set in G with |S| = β. Since adding edges into a graph will increase its Hλ(G) by
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Lemma 2.13, the subgraph induced by vertices in G − S is a clique in G, moreover

each vertex x in S is adjacent to every vertex y in G−S, then G ∼= βK1 +Kn−β. An

elementary calculation gives Hλ(G) ≤ (n− β)(nβ − β2 + (n− 1)2 + 2λ(β2 − β)), and

the proof is completed. �
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