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ABSTRACT. The effect of the porosity of the medium on the stability 
characteristics of a viscoelastic fluid flow over a stretching plate is investigated. A 
three-dimensional linear stability analysis is performed by means of the Method 
of Weighted Residuals for disturbances of the Taylor-Gortler type. It is found that 
the porosity of the medium exerts a stabilizing influence on the flow.  

 
 
 

INTRODUCTION 
 

 The flow above a stretching sheet has various interesting engineering applications 
such as in the polymer processing unit of a chemical engineering plant, and for the metal 
working process in metallurgy. CRANE [1] studied the steady two-dimensional boundary-layer 
flow caused by stretching the sheet which moves in its own plane with a velocity that varies 
linearly with the distance from a fixed point on the sheet. Later, many authors have extended 
this problem to non-Newtonian fluids without or with heat and mass transfer [2-7]. Extensions 
to the case of electrically conducting Newtonian and non-Newtonian fluids without or with 
heat transfer were examined by several researchers [8-13]. BHATTACHARYYA and GUPTA [14] 
and TAKHAR et al. [15] have studied the viscous flow of a Newtonian fluid over a stretching 
sheet with respect to three-dimensional disturbances of the Taylor-Gortler type. Later, 
DANDAPAT et al. handled the stability of a viscoelastic non-Newtonian fluid flow caused by 
stretching of a sheet in the hydrodynamic case [16] and in the magnetohydrodynamic case 
[17]. 

In the present study, the effect of the porosity of the medium on the stability 
characteristics of the viscoelastic compressible fluid flow due to a stretching sheet was 
discussed. The flow through the porous medium deals with the analysis in which the 
differential equation governing the fluid motion is based on the Darcy’s law which accounts 
for the drag exerted by the porous medium [18-20]. 
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MATHEMATICAL FORMULATION 

 
The flow of an incompressible viscoelastic fluid is due to the stretching of an 

impermeable flat plate in the x-z plane which is stretched along the x-axis. The viscoelastic 
fluid occupies the half space defined by y>0.  The basic velocity field )0),,(),,(( yxvyxu oo  
developed due to the stretching of the plate will satisfy the boundary-layer equations 
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with the boundary conditions 
 

,0,0,:0 ≥=== xvcxuy oo                                                                                      (3)  
 

,0,0: ≥→∞→ xuy o                                                                                               (4)  
 
where c is a constant and ν , *

oχ , ρ , and K denote the kinematic viscosity, viscoelastic 
parameter, density of the fluid, and Darcy permeability [20], respectively. Following 
DANDAPAT et al. [17] an exact similarity solution of the above system can be obtained as 
 

)(ηη fcxcxeu Q
o ′== − ,                                                                                             (5) 

 
)()(/)1()( 2/12/1 ηνν η fcQecv Q
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To discuss the stability of the above solutions (5) and (6) we follow the procedure of 
DANDAPAT et al. [17] and then we obtain the following perturbed equations after eliminating 
all variables except u and v:                                                                                                         
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where c/22 ναα =  and c/ββ = .  It should be pointed out that in deriving Eqs. (7) and (8) 
we have assumed that all the perturbed quantities have periodicity in the direction normal to 
the basic flow with the usual exponential time-dependence.  Here α  andβ  denote the wave 
number and the phase speed, respectively, and 1u  and 1v  are the corresponding normal mode 
components for u and v [17].  The corresponding boundary conditions are 
 

0111 =′== vvu  at 0=η  and ∞→η .                                                                       (9) 
 
Following Dandapat et al. [17] we have transformed the η  variable into T according to 
 

dt
dTLeT Q −== − ,η                                                                                                     (10) 

 
and then applying the Method of Weighted Residuals to the transformed equations by 
expanding 1u  and 1v  as 
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)(Tui  and )(Tvi  are chosen by satisfying the transformed boundary conditions 

 
0111 === Lvvu  at 0=T  and 1=T ,       

 
and 
 

)1( TTu i
i −=  and 2)1( TTv i

i −= .                                                                             (12) 
 
The growth rateβ  is calculated as the eigenvalue of the matrix which is formed using (11) in 
the transformed equations and restricting to the orthogonality condition as demanded by the 
Method of Weighted Residuals [21].  In this calculation we have restricted ourselves to 10-
term trial functions, although good results may be obtained with even a 2-term approximation. 
 
 

DISCUSSION 
 

The analysis in the preceding section helps in determining the combined effects of 
fluid viscoelasticity and the porosity on the stability of the boundary layer flow along a 
stretching plate. However, for an inelastic fluid ( 0=γ ) the problem reduces to the Newtonian 
flow problem considered by TAKHAR et al. [15], whereas the non-porous case examined by 
DANDAPAT et al. [16] is recovered for N=0.  This shows that the flow is stable for 
disturbances of the Taylor-Gortler type. The porosity stabilizes the flow for both Newtonian 
( 0=γ ) and non-Newtonian ( 0≠γ ) fluids for the whole range of wave-number which can be 
explained as the disturbance kinetic energy gets exhausted in order to overcome the resistive 
porosity force.  
 
 
 



14 

 

References: 
 

[1] CRANE, L. J. (1970): Flow past a stretching plate. ZAMP 21: 645-647. 
[2] CHIAM, T. C. (1982): Micropolar fluid flow over a stretching sheet. ZAMM 62: 565-568. 
[3] RAJAGOPAL, K. R., NA, T. Y. and GUPTA, A. S. (1984): Flow of a viscoelastic fluid over 

a stretching sheet. Rheol. Acta 24: 213-215. 
[4] ANDERSSON, H. I. and DANDAPAT, B.S. (1991): Flow of a power-law fluid over a 

stretching sheet. Stability. Appl. Anal. Continuous Media 1: 339-347. 
[5] DANDAPAT, B. S. and GUPTA, A. S. (1989): Flow and heat transfer in a viscoelastic fluid 

over a stretching sheet. Int. J. Non-Linear Mech. 24: 215-219. 
[6] ANDERSSON, H. I. and HANSEN, O. R. (1993): Chemical reactions in the viscoelastic 

boundary layer along a stretching sheet. In: Some applied problems in fluid mechanics 
(MAZUMDAR, H. P., ed.), pp. 37-44. Calcutta, Ind. Stat. Institute. 

[7] ANDERSSON, H. I., HANSEN, O. R. and HOLMEDAL, B. (1994): Diffusion of a chemically 
reactive species from a stretching sheet. Int. J. Heat Mass Trans. 37: 659-664. 

[8] PAVLOV, K. B. (1974): Magnetohydrodynamic flow of an incompressible viscous fluid 
caused by deformation of a plane surface. Magnitnaya Gidrodinamika 4: 146-147. 

[9] CHAKRABARTI, A. and GUPTA, A. S. (1979): Hydromagnetic flow and heat transfer over 
a stretching sheet. Q. Appl. Math. 37: 73-78. 

[10] MANDAL, G., GUPTA, A. S., and POP, I. (1987): Magnetohydrodynamic flow of an 
incompressible viscous fluid caused by the axisymmetric stretching o a plane sheet. 
Magnitnaya Gidrodinamika 1: 10-14. 

[11] ANDERSSON, H. I. (1992): MHD flow of a viscoelastic fluid past a stretching surface. 
Acta Mech. 95: 227-230. 

[12] ANDERSSON, H. I. (1995): An exact solution of the Navier-Stokes equations for 
magnetohydrodynamic flow. Acta Mech. 113: 241-244. 

[13] ANDERSSON, H. I., BECH, K. H., and DANDAPAT, B. S. (1992): Magnetohydrodynamic 
flow of a power-law fluid over a stretching sheet. Int. J. Non-Linear Mech. 27: 929-936.  

[14] BHATTACHARYYA, S. N., and GUPTA, A. S. (1985): On the linear stability of viscous 
flow over a stretching sheet. Q. Appl. Math. 43: 359-367.  

[15] TAKHAR, H. S., ALI, M. A., and GUPTA, A. S. (1989): Stability of 
magnetohydrodynamic flow over a stretching sheet. In: Liquid metal hydrodynamics 
(Lielpeteris, J., Moreau, R., eds.), pp. 465-471. Dordrecht: Kluwer.  

[16] DANDAPAT, B. S., HOLMEDAL, L. E., and ANDERSSON, H. I. (1994): Stability of flow of 
a viscoelastic fluid over a stretching sheet. Arch. Mech. 46: 829-838. 

[17] DANDAPAT, B. S., HOLMEDAL, L. E., and ANDERSSON, H. I. (1998): On the stability of 
MHD flow of a viscoelastic fluid over a stretching sheet. Acta Mechanica, 130: 143-146. 

[18] JOSEPH, D. D., NIELD, D. A., and PAPANICOLAOU, G. (1982): Nonlinear equation 
governing flow in a saturated porous medium. Water Resources Research, 18(4): 1049-
1052. 

[19] INGHAM, D. B. and POP, I. (2002): Transport phenomena in porous media. Pergamon, 
Oxford. 

[20] KHALED, A. R. A., and VAFAI, K. (2003): The role of porous media in modeling flow 
and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46: 4989-5003. 

[21] FINLAYSON, B. A. (1972): The method of weighted residuals and variational principles: 
With Applications in Fluid Mechanics. New York: Academic Press. 

 


