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ABSTRACT. The transient flow with heat transfer through a porous medium of an 
incompressible viscous fluid due an infinite rotating disk is studied considering Darcy's 
model. The nonlinear partial differential equations that govern the motion of the fluid and 
the energy equation including the dissipation are solved numerically using finite 
differences. The effect of the porosity of the medium on both the velocity and 
temperature fields is investigated.   
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INTRODUCTION 
 

The flow due to an infinite rotating disk was studied by von KARMAN in 1921 [1] who 
deduced a similarity transformation that reduced the governing partial differential equations to 
ordinary differential ones. Then, COCHRAN [2] obtained asymptotic solutions for the problem 
formulated by von Karman. BENTON [3] improved Cochran's solution and extended the prob-
lem to the transient state. The heat transfer from a rotating disk maintained at a constant tem-
perature was studied in the steady state by MILLSAPS and POHLHAUSEN [4] for a variety of 
Prandtl numbers. SPARROW and GREGG [5] investigated the steady state heat transfer from a 
rotating disk maintained at a constant temperature to fluids for all values of Prandtl number.  
The effect of an external axial uniform magnetic field on the flow due to a rotating disk was 
studied by many authors [6-8]. The effect of uniform suction or injection through the holes of 
a rotating porous disk on the steady hydrodynamic or hydromagnetic flow induced by the disk 
was studied [9-14]. The flow due a rotating disk through a porous medium was studied in the 
steady state [15]. 
 In this paper, the transient laminar flow through a porous medium of a viscous 
incomepressible fluid due to the uniform rotation of a disk of infinite extent is studied with 
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heat transfer and dissipation. The flow through the porous medium deals with the analysis in 
which the differential equations governing the fluid motion is based on the Darcy’s law which 
accounts for the drag exerted by the porous medium [16-18]. The temperature of the disk is 
impulsiely changed and then maintained at a constant value. The nonlinear partial differential 
equations that govern the motion of the fluid and the energy equation including the dissipation 
are solved numerically using finite differences with suitable coordinate transformations to 
remove a discontinuity between the initial and boundary conditions. The effect of the porosity 
of the medium on both the velocity and temperature distributions is presented. 
 
 

BASIC EQUATIONS 
 

It is assumed that the disk lies in the plane z=0 and the space z>0 is filled with a 
viscous incompressible fluid in a porous medium where the Darcy model is assumed [16-18].  
The motion is due to the rotation of an infinite disk about an axis perpendicular to its plane 
with constant angular speed ω where otherwise the fluid is at rest under pressure ∞p . The 
equations of motion in the transient state are given by 
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where u, v, w are the velocity components in the directions of increasing r,ϕ , z respectively, 
P is denoting the pressure, µ  is the coefficient of viscosity, ρ  is the density of the fluid, and 
K is the Darcy permeability [16-18].  We introduce von Karman transformations [1], 

PvppvzHvwGrvFru ωρζωωωω −=−==== ∞,/,,,  
whereζ is a non-dimensional distance measured along the axis of rotation, F, G, H and P are 
non-dimensional functions of ζ and t, and ν  is the kinematic viscosity of the fluid, ρµν /= .  
Using these definitions, Eqs. (1)-(4) take the form 
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ων KM /=  is the porosity parameter.  The initial and boundary conditions for the velocity 

problem are given by 

,0,0,0,0 ==== HGFt                                                                                   (9a) 
,0,1,0,0 ==== HGFζ                                                                                   (9b) 
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,0,0,0, →→→∞→ PGFζ                                                                            (9c) 
The above system of Eqs. (5)-(7) with the prescribed initial and boundary conditions 

given by Eq. (9) are solved for the three unknown components of the flow velocity. Equation 
(8) can be used to solve for the pressure distribution if required. 
 

Due to the difference in temperature between the wall and the ambient fluid, heat 
transfer takes place. The energy equation including the dissipation takes the form [4-5]; 
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where T is the temperature of the fluid, cp and k are, respectively the specific heat at constant 
pressure and the thermal conductivity of the fluid. The initial and boundary conditions for the 
energy problem are that the temperature is changed impulsively from rest and, by continuity 
considerations, it equals Tw at the surface of the disk. At large distances from the disk, T 
tends to T∞ where T∞ is the temperature of the ambient fluid. In terms of the non-dimensional 
variable θ=(T-T∞)/(Tw-T∞) and imposing von Karman transformations, Eq. (10) takes the 
form; 
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where Pr is the Prandtl number, Pr=cpµ/k and )(/22
∞−= TTcrEc wpω  is the Eckert 

number. The initial and boundary conditions in terms of θ are expressed as 
 

0),(,1)0,(,0),0( =∞== tt θθζθ                                                                               (12) 
 
The heat transfer from the disk surface to the fluid is computed by application of 

Fourier's law 
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Introducing the transformed variables, the expression for q becomes 
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By rephrasing the heat transfer results in terms of a Nusselt number defined as, 

)(// ∞−= TTkQN wu νω  the last equation becomes 
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Numerical solution for the governing nonlinear Eqs. (5)-(7) with the conditions given 

by Eq. (9), using the method of finite-differences, leads to a numerical oscillation problem 
resulting from the discontinuity between the initial and boundary conditions (9a) and (9b). 
The same type of discontinuity happens between the initial and boundary conditions for the 
energy problem (see Eq. (12)).  A solution for this numerical problem is obtained using 
proper coordinate transformations, as suggested by Ames [19] for similar problems.  
Expressing Eqs. (5)-(7) and (11) in terms of the modified coordinate η=ζ/2√t we get 
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Equations (13)-(16) represent coupled system of non-linear partial differential 

equations which can be solved numerically under the initial and boundary conditions (9) and 
(12) using the method of finite differences. A linearization technique is first applied to replace 
the nonlinear terms at a linear stage, with the corrections incorporated in subsequent iterative 
steps until convergence is reached.  The Crank-Nicolson implicit method is then used at two 
successive time levels [19].  An iterative scheme is used to solve the linearized system of 
difference equations. The solution at a certain time step is chosen as an initial guess for the 
next time step and the iterations are continued till convergence, within a prescribed accuracy. 
Finally, the resulting block tri-diagonal system is solved using the generalized Thomas-
algorithm [19]. Finite difference equations relating the variables are obtained by writing the 
equations at the mid point of the computational cell and then replacing the different terms by 
their second order central difference approximations in the η-direction. The diffusion terms 
are replaced by the average of the central differences at two successive time-levels. The 
computational domain is divided into meshes each of dimension ∆t and ∆η in time and space 
respectively. The modified Eqs. (13)-(16) are integrated from t=0 to t=1. Then, the solution 
obtained at t=1 is used as the initial condition for integrating Eqs. (5)-(7) and (11) from t=1 
towards the steady state. 

The resulting system of equations has to be solved in the infinite domain 0<η <∞. A 
finite domain in the η -direction can be used instead with η  chosen large enough such that the 
solutions are not affected by imposing the asymptotic conditions at a finite distance. The 
independence of the results from the length of the finite domain as well as the grid density 
was ensured and successfully checked by various trial and error numerical experimentations. 
Computations are carried out for η ∞=10 and step size ∆η =0.04 which are found adequate for 
the ranges of the parameters studied here. Larger finite distance or smaller step size do not 
show any significant change in the results. Convergence of the scheme is assumed when all of 
the variables F, G, H, θ, ∂F/∂η , ∂G/∂η , and ∂θ/∂η   for the last two approximations differs 
from unity by less than 10-6 for all values of η  in 0<η <10 and all t.  
 

 
RESULTS AND DISCUSSION 

 
Figures 1 and 2 show the evolution of the azimuthal, radial, and vertical velocity 

profiles towards the steady state, respectively, for M=0 and M=1. The figures show that the 
vertical velocity component reaches the steady state slower than the radial velocity 
component and much slower than the azimuthal velocity component. This is due to the fact 
that the centrifugal effect is the source of the radial motion which is the source of the vertical 
motion.  Comparison between Figs. 1 and 2 indicates the resistive effect of the porosity of the 
medium on the flow and its influence on reducing the time required for the velocity profiles to 
approach their steady state profiles.  It is also clear from Fig. 1 that the velocity components F 
and H do not reach their steady state profiles monotonically with time.  As time develops, 
both F and H decrease near the disk and increase far from it, which accounts for the crossing 
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of each of the F and H profiles with time which is more pronounced for H than for F. Figure 2 
indicates the marked effect of the porosity on shifting the crossover occurs in both F and H 
profiles far from the disk.  
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Fig. 1. - Time variation of the velocity profiles for M=0. 
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Fig. 2. - Time variation of the velocity profiles for M=1. 
 

Figure 3 shows the evolution of the profile of the temperatureθ  with time for the cases 
M=0 and M=1, respectively and for Pr=0.7. It is shown in the figure that θ  reaches the steady 
state monotonically. Also the figure indicates the influence of increasing the porosity 
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parameter on increasing θ  as a result of the effect of the porosity in preventing the fluid at 
near-ambient temperature from reaching the surface of the disk. 
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Fig. 3. - Time variation of the profilesθ  for: (a) M=0; (b) M=1. 
 
 

Figure 4 presents the time variation of the Nusselt number Nu respectively, for various 
values of the porosity parameter M and for Pr=0.7. It is clear from Fig. 4 that increasing M, 
which decreases the axial flow towards the disk, decreases Nu since the absence of the fluid at 
near-ambient temperature close to the surface of the disk increases the heat transfer. For small 
values of time t, Nu increases with time up till a maximum value which does not depend 
greatly on M due to the very small variation in θ . As time develops, the variation in θ  with 
M increases and then Nu decreases. 

 
Tables 1 and 2 present the variation of the radial wall shear, azimuthal wall shear, the 

axial inflow at infinity and the Nusselt number at the surface of the disk for various values of 
the parameter n, m and, respectively, and for Ec=0.2 , Pr=0.72.  
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Fig. 4. - Effect of M on the time variation of Nu. 
 
 

Table 1. - Variation of F'(0) and G'(0) for various values of M. 
 

G'(0)- F'(0) 
M=2 M=1 M=0 M=2 M=1 M=0 

1.4421 1.0691 0.6159 0.2306 0.3093 0.5102 

 
It is clear from Table 1 that increasing n increases the radial wall shear while 

decreases the azimuthal wall shear and its effect becomes more apparent for the non-porous 
case.  

 
Table 2. - Variation of H (∞) and θ'(0) for various values of M 

and for Pr=0.72 and Ec=0.20. 
 

θ'(0)- -H'(∞) 
m=2 m=1 m=0 m=2 m=1 m=0 

0.0276 0.0715 0.2761 0.1086 0.2533 0.8845 
 

On the other hand, the influence of the parameter n on the axial inflow at infinity 
depends on the porosity parameter as illustrated in Table 2. Therefore, increasing n decreases 
the axial inflow towards the disk in the non-porous case, while slightly increases it in the 
porous case. Table 2 presents that increasing the parameter n decreases the heat transfer at the 
surface of the disk and, in turn, decreases the Nusselt number Nu. Increasing the porosity 
parameter m decreases the radial wall shear, the axial inflow at infinity, the heat transfer at the 
surface of the disk, but increases the azimuthal wall shear. 
 
 

CONCLUSION 
 

In this paper the transient flow through a porous medium due to a rotating disk was 
studied with heat transfer including dissipation. The presented results show the restraining 
effect of the porosity on the transient flow. On the other hand, increasing the porosity 
parameter increases the temperature of the fluid. It is observed that the radial and vertical 
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components of the velocity do not reach their steady state profiles monotonically which 
results in crossing of the charts of these velocity components with time. The porosity of the 
medium has an important effect on pushing these crossing points far from the disk.  
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