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ABSTRACT. The unsteady magnetohydrodynamic flow of an electrically conducting, 
viscous, incompressible fluid bounded by two parallel non-conducting porous plates is 
studied with heat transfer. An external uniform magnetic field and a uniform suction and 
injection are applied perpendicular to the plates while the fluid motion is subjected to an 
exponential decaying pressure gradient. The two plates are kept at different but constant 
temperatures while the Joule and viscous dissipations are included in the energy equation. 
The effect of the magnetic field and the uniform suction and injection on both the velocity 
and temperature distributions is examined. 

 
 
 

INTRODUCTION 
 

The magnetohydrodynamic flow between two parallel plates, known as Hartmann flow, 
is a classical problem that has many applications in magnetohydrodynamic (MHD) power 
generators, MHD pumps, accelerators, aerodynamic heating, electrostatic precipitation, 
polymer technology, petroleum industry, purification of crude oil and fluid droplets and sprays. 
HARTMANN and LAZARUS [1] studied the influence of a transverse uniform magnetic field on 
the flow of a conducting fluid between two infinite parallel, stationary, and insulated plates. 
Then, a lot of research work concerning the Hartmann flow has been obtained under different 
physical effects [2-10]. 
 In the present study, the unsteady magnetohydrodynamic flow and heat transfer of an 
incompressible, viscous, electrically conducting fluid between two infinite non-conducting 
horizontal porous plates are studied. The fluid is acted upon by an exponential decaying 
pressure gradient, a uniform suction and injection and a uniform magnetic field perpendicular 
to the plates. The induced magnetic field is neglected by assuming a very small magnetic 
Reynolds number [4, 5]. The two plates are maintained at two different but constant 
temperatures. This configuration is a good approximation of some practical situations such as 
heat exchangers, flow meters, and pipes that connect system components. The cooling of these 
devices can be achieved by utilizing a porous surface through which a coolant, either a liquid 
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or gas, is forced. Therefore, the results obtained here are important for the design of the wall 
and the cooling arrangements of these devices. The equations of motion are solved analytically 
using the Laplace transform method while the energy equation is solved numerically taking 
the Joule and the viscous dissipations into consideration. The effect of the magnetic field, the 
Hall current, the ion slip, and the suction and injection on both the velocity and temperature 
distributions is studied. 
 
 

DESCRIPTION OF THE PROBLEM 
 

The two non-conducting plates are located at the y=±h planes and extend from x=-∞ to 
∞ and z=-∞ to ∞ . The lower and upper plates are kept at the two constant temperatures T1 and 
T2, respectively, where T2>T1. The fluid flows between the two plates under the influence of 
an exponential decaying pressure gradient dP/dx in the x-direction, and a uniform suction from 
above and injection from below which are applied at t=0. The whole system is subjected to a 
uniform magnetic field Bo in the positive y-direction. This is the total magnetic field acting on 
the fluid since the induced magnetic field is neglected. From the geometry of the problem, it is 
evident that ∂/∂x=∂/∂z=0 for all quantities apart from the pressure gradient dP/dx, which is 
assumed constant. The velocity vector of the fluid is 
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with the initial and boundary conditions u=0 at t≤0, and u=0 at y=±h for t>0. The temperature 
T(y,t) at any point in the fluid satisfies both the initial and boundary conditions T=T1 at t≤0, 
T=T2 at y=+h, and T=T1 at y=-h for t>0. The fluid flow is governed by the momentum equation 
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where ρ , µ  and σ  are, respectively, the density, the coefficient of viscosity and the 
electrical conductivity of the fluid. To find the temperature distribution inside the fluid we use 
the energy equation [11] 
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where c and k are, respectively, the specific heat capacity and the thermal conductivity of the 
fluid. The second and third terms on the right-hand side represent the viscous and Joule 
dissipations, respectively. 
 The problem is simplified by writing the equations in the non-dimensional form. The 
characteristic length is taken to be h, and the characteristic time is 22 / µρh  while the 
characteristic velocity is hρµ / . We define the following non-dimensional quantities 
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,/ µρ hvS o=  is the suction parameter, 
kc /Pr µ=  is the Prandtl number, 

)(/ 12
222 TTchEc −= ρµ   is the Eckert number, 

µσ /222 hBHa o=   where Ha is the Hartmann number, 
 
 In terms of the above non-dimensional variables and parameters, the basic Eqs. (1)-(2) 
are written as (the "hats" will be dropped for convenience) 
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The initial and boundary conditions for the velocity become 
 

0,1,0,0,0 >±==≤= tyutu                                                                               (5) 
 
and the initial and boundary conditions for the temperature are given by 
 

.1,0,1,1:0,0:0 −==+==>=≤ yTyTtTt                                                      (6) 
 
 

Analytical solution of the equations of motion 
 

Equation (3) is the equation of motion which, if solved, give the velocity field as 
functions of space and time. Equation (3) is a linear, inhomogeneous partial differential 
equation, which can be solved analytically using the Laplace transform (LT) method, under 
the initial and boundary conditions given by Eq. (5). Taking the LT of Eq. (3) gives 
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where U(y,s)=L(u(y,t)), -F(s) is the LT of the pressure gradient and sHasK += 2)( .  The 
solution of Eq. (7) with y as an independent variable is given as 
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where KSq += 4/22 . Using the complex inversion formula and the residue theorem [12], 
the inverse transform of U(y,s) is determined as 
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where 
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Numerical Solution of the Energy Equation 
 
The exact solution of the equation of motion, given by Eq. (8), determines the velocity 

field for different values of the parameters Ha and S. The values of the velocity components, 
when substituted in the right-hand side of the inhomogeneous energy equation (4), make it too 
difficult to solve analytically.  he energy equation is to be solved numerically with the initial 
and boundary conditions given by Eq. (6) using finite differences [13]. The Crank-Nicolson 
implicit method is applied. The finite difference equations are written at the mid-point of the 
computational cell and the different terms are replaced by their second-order central difference 
approximations in the y-direction. The diffusion term is replaced by the average of the central 
differences at two successive time levels. The viscous and Joule dissipation terms are 
evaluated using the velocity components and their derivatives in the y-direction which are 
obtained from the exact solution. Finally, the block tri-diagonal system is solved using 
Thomas' algorithm. Unlike the velocity u, the temperature distribution depends on C. All 
calculations have been carried out for C=1, α=1, Pr=1 and Ec=0.2.  
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RESULTS AND DISCUSSION 
 
Figure 1 presents the velocity and temperature distributions as functions of y for 

different values of the time starting from t=0 to the steady state. Figures 1a and 1b are 
evaluated for Ha=1 and S=1. The velocity curves are asymmetric about the y=0 plane because 
of the suction as shown in Fig. 1a. It is observed that the velocity component u decreases 
monotonically with time, although the temperature T increases monotonically with t. 
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Fig. 1. - Time development of the profile of: (a) u; and (b) T 
(Ha=1 and S=1) 
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Fig. 2. - Effect of Ha on the time variation of: (a) u at y=0; (b) T at y=0. (S=0) 

 
Figure 2 shows the effect of the Hartmann number Ha on the time development of the 

velocity u and temperature T at the centre of the channel (y=0). In this figure, S=0 (suction 
suppressed). It is clear from Fig. 3a that increasing the parameter Ha decreases u and its steady 
state time. This is due to increasing the magnetic damping force on u. Figure 2b and Table 1 
indicate that increasing Ha increases T at small times but decreases it at large times. This can 
be attributed to the fact that, for small times, u is small and an increase in Ha increases the 
Joule dissipation which is proportional to Ha and therefore, the temperature increases. For 
large times, increasing Ha decreases u and, in turn, decreases the Joule and viscous 
dissipations and consequently decreases T. This accounts for crossing the curves of T with 
time for various values of  Ha. 
 

Table 1. - Time variation of the temperature at y=0 for various values Ha (S=0). 
 

T t=0.2 t=0.4 T=0.6 t=0.8 t=1 t=1.2 t=1.4 t=1.6 t=1.8 t=2 
Ha=0 0.1156 0.2663 0.3599 0.4173 0.4519 0.4726 0.4847 0.4917 0.4957 0.4979 
Ha=1 0.1159 0.2675 0.3617 0.4187 0.4529 0.4730 0.4848 0.4916 0.4955 0.4976 
Ha=3 0.1168 0.2682 0.3608 0.4165 0.4500 0.4701 0.4822 0.4894 0.4937 0.4963 
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Fig. 3. - Effect of S on the time variation of: (a) u at y=0; (b) T at y=0. (Ha=0) 

 
 

Figure 3 shows the effect of the suction parameter on the time development of the 
velocity u and temperature T at the centre of the channel (y=0). In this figure, Ha=0 
(hydrodynamic case). In Fig. 3a, it is observed that increasing the suction decreases the 
velocity u at the center and its steady state time due to the convection of fluid from regions in 
the lower half to the center, which has higher fluid speed. In Fig. 3b, the temperature at the 
center is affected more by the convection term, which pumps the fluid from the cold lower 
half towards the centre.  
 
 

CONCLUSION 
 

The unsteady Hartmann flow of a conducting fluid under the influence of an applied 
uniform magnetic field and an exponential decaying pressure gradient has been studied in the 
presence of uniform suction and injection. The effect of the magnetic field and the suction and 
injection velocity on both the velocity and temperature distributions has been investigated. It is 
found that the magnetic field has a marked effect on the velocity distribution more than its 
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effect on the temperature distribution. On the other hand, the suction and injection velocity has 
a more apparent effect on the temperature distribution than on the velocity distribution. It is of 
interest to see that the effect of the magnetic field on the temperature at the center of the 
channel depends on time. For small time, increasing the magnetic field increases the 
temperature, however, for large time, increasing the magnetic field decreases the temperature. 
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