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ABSTRACT. Let G be a molecular graph. The eccentric connectivity index ξ(G) is 
defined as ξ(G) ൌ ∑ degሺuሻεሺuሻ୳א୚ሺୋሻ  , where deg(u) denotes the degree of vertex u and 
ε(u) is the largest distance between u and any other vertex v of G. In this paper, an exact 
formula for the eccentric connectivity index of a class of dendrimers is given. The 
correctness of this formula is investigated by computing the layer matrix of this class of 
dendrimers. 
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INTRODUCTION 

 
Dendrimers are highly branched macromolecules. They are being investigated for possible 
uses in nanotechnology, gene therapy, and other fields. Each dendrimer consists of a 
multifunctional core molecule with a dendritic wedge attached to each functional site. The 
core molecule without surrounding dendrons is usually referred to as zeros generation. Each 
successive repeat unit along all branches forms the next generation, 1st generation and 2nd 
generation and so on until the terminating generation. The topological study of these 
macromolecules is the aim of this article, see [1-4] for details. 

We now describe some notations which will be kept throughout. The distance d(u,v) 
between two vertices u and v of a graph G is defined as the length of a shortest path 
connecting them. The summation of these numbers over all edges of G is called the Wiener 
index of G [5]. For a given vertex u of V(G) its eccentricity, ε(u), is the largest distance 
between u and any other vertex v of G. The maximum eccentricity over all vertices of G is 
called the diameter of G and denoted by D(G). The eccentric connectivity index ξ(G) is 
defined as ξ(G) ൌ ∑ ሺ۵ሻ܄אܝሻܝሻઽሺܝሺ܏܍܌ ,  [6]. Some chemical application of this new proposed 
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topological index are reported in [7−16] and its mathematical properties are studied in 
[17−21].  

This paper addresses the problem of computing the eccentric connectivity index of 
nanostar dendrimers. Our notation is standard and taken mainly from [22] and the standard 
books of graph theory.  

 
 

MAIN RESULT AND DISCUSSION 
 

Let G be an n-vertex graph. Layer matrices have been proposed in connection to the 
sequences of walks: DDS (Distance Degree Sequence), PDS (Path Degree Sequence), and WS 
(Walk Sequence). They are built up on the layer partitions in G. A layer partition G(i) with 
respect to the vertex i, in G, is defined as  

G(i) = {G(v)j | j ∈[0,ε(i)] and v ∈ G(v)j ⇔ d(i,v) = j}.  

The entries in a layer matrix, LM, collect the property Mv (topological or chemical) for all 
vertices v belonging to the layer G(v)j, [LM]ij = ∑ ሺ௩ሻೕீא௩.௩ܯ  The matrix LM can be written as 
LM(G) = { [LM]ij | i א V(G );  jא [0, D(G)]}. The dimensions of such a matrix are n × 
(D(G)+1), see [22] for details.  
 Suppose NS[n] denotes the molecular graph of a dendrimer with exactly n generations 
depicted in Fig. 1. The aim of this paper is to compute the eccentric connectivity index of this 
dendrimer.  
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Fig. 1. − The Nanostar Dendrimer NS[2]. 

 

 We first compute the eccentric connectivity index of NS[n] and then we check our 
calculations by computing the layer matrix of this dendrimer. Consider the core of NS[n] 
depicted in Fig. 2.  
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Fig. 2. − The Core of Dendrimer NS[2]. 
 
 From the molecular graph of this dendrimer, one can see that some vertices of the 
graph have the same degree and the same eccentricity. So for computing the eccentric 
connectivity index of NS[n], it is enough to compute the eccentricity of a set of 
representatives. At first, one can see that NS[n] has exactly 2n+4 – 4 vertices. By a simple 
calculation, we have: 

ξ(NS[1])  =  (2×3×10) + (4×2×11) + (4×2×12) + (2×3×13) + (2×2×14)   
                + (2×2×15) + (2×3×16)  + (4×2×17) + (4×2×18) + (2×2×19)  
                = 890. 
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Fig. 3. – The Subgraph of NS[n] Constructed in the First Generation. 

 

 In the second step (when n = 2) we will find four new subgraphs containing a hexagon 
and a path of length 3 are added. We label the representative vertices of NS[2] by 11, 12, 13, 
14, 15 and 16, Fig. 3. By a simple calculation, we can see that there are 2i+1 vertices of type 
11 with eccentricity 1 + 5 × (i − 1) + 17 + 5 × (n − 1) + 1 = 5n + 5i + 9. In Table 1, the 
degrees, frequencies and eccentricities of these vertices are computed.  

We now partition the molecular graph of NS[n] into two parts, one of them is the core 
C and other is the maximal subgraph T of NS[n] with vertex set V(NS[n]) – V(C). Then we 
have:  

 

ξ(T) = 2 ∑ 2୧ାଵ௡ିଵ
௜ୀଵ  (5n + 5i + 9) + 2 ∑ 2୧ାଵ௡ିଵ

௜ୀଵ  (5n + 5i + 10) + 3 ∑ 2୧ାଶ௡ିଵ
௜ୀଵ  (5n + 5i + 11) + 

2 ×∑ 2୧ାଶ௡ିଵ
௜ୀଵ  (5n + 5i + 12)  + 3 ×∑ 2୧ାଶ௡ିଶ

௜ୀଵ  (5n + 5i + 13)  + 2 × ∑ 2୧ାଵ௡ିଵ
௜ୀଵ  (5n + 5i + 14) + 

2 × 2n+1 (10n + 8) = 420n × 2n + 60 × 2n − 440n − 592. 
 

ξ(C) = 6 × (5n + 5) + 8 × (5n + 6) + 8 × (5n + 7) + 6 × (5n + 8) + 4 × (5n + 9) + 4 × (5n + 10) 

+ 6 × (5n + 11) + 8 × (5n + 12) + 12 × (5n + 13) + 4 × (5n + 14) = 330n + 632.  
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Table 1. - The Frequencies and Eccentricities of Vertices 13, 14, 15, 16, 17 and 18. 
 

Eccentricity FrequencyDegree No. 
1+5(i−1) +17+5(n−1)+1 2i+1 2 11 
2+5(i−1)+17+5(n−1)+1 2i+1 2 12 
3+5(i−1)+17+5(n−1)+1 2i+1 3 13 
4+5(i−1)+17+5(n−1)+1 2×2i+1 2 14 

   5+5(i-1)+17 +5(n-1)+1 or 
5+5(n-2)+17+5(n−1)+1   2×2i+1 or 2×2n 3 or 2  15 

6+5(i−1)+17+5(n−1)+1 2i+1 2 16 
  

Then ξ(NS[n]) = 420n × 2n + 60 × 2n − 110n + 40. In Table 2, the eccentric 
connectivity index of NS[n], n ≤ 12, are computed. 

 

Table 2. - The Eccentric Connectivity Index (ECI) of NS[n], n ≤ 12. 

6 5 4 3 2 1 No 
164500 68610 27440 10270 3420 890 ECI 

12 11 10 9 8 7 No 
20888320 9583470 4361180 1965130 874680 383270 ECI 

 
 

In what follows, the layer matrix of NS[n] is also computed. In this matrix the first 

column from left, denotes the frequencies of each representative, the first column from right is 

the number of non-zero entries in each row minus 1 and the second column is trivially the 

degree sequence of NS[n]. If we use this matrix to compute the eccentric connectivity index 

of NS[n], we will obtain the same equation for computing eccentric connectivity index of 

NS[n]. This shows that our calculations are correct. 
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