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ABSTRACT. In this paper we introduce a new kind of graph energy, the minimum covering
energy, F.(G). It depends both on the underlying graph G, and on its particular minimum
cover C. Upper and lower bounds for E.(G) are established. The minimum covering energies
of a number of well-known and much studied families of graphs are computed.

1 Introduction

The energy of a graph can be traced back to the 1930s, in which time the German
scholar Erich Hiickel put forward a method for finding approximate solutions of the
Schrodinger equation of a class of organic molecules, the so-called unsaturated con-
jugated hydrocarbons [1,2]. This approach is nowadays referred to as the Hiickel
molecular orbital (HMO) theory [3,4].
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Within HMO theory, the total energy of m-electrons is equal to the sum of the
energies of all 7-electrons in the considered molecule. It can be calculated from the
eigenvalues of the underlying molecular graph [3,5,6]. Motivated by HMO total -
electron energy, one of the present authors [7] conceived the energy of a graph, defined
as the sum of the absolute values of all graph eigenvalues. This definition is by no
means restricted to molecular graphs, and enabled one to obtain a remarkable number
and variety of novel mathematical results. For further information on the theory of
graph energy refer to [8-11].

In connection with graph energy (that is defined in terms of the eigenvalues of
the adjacency matrix), energy—like quantities were considered also for other matrices:
Laplacian [12], distance [13], incidence [14], etc. [15-17]. Recall that a great variety
of matrices has so far been associated with graphs [18]. In this paper we introduce
a new matrix, called minimum covering matriz of a graph, and study its eigenvalues
and energy.

All the graphs considered in this paper are finite, simple and undirected. In
particular, these graphs do not possess loops. Let G be such a graph, of order n with
vertex set V' = {v1,vg,...,v,} and edge set E. A subset C' of V is called a covering
set of G if every edge of G is incident to at least one vertex of C'. Any covering set
with minimum cardinality is called a minimum covering set. Let C' be a minimum

covering set of a graph G. The minimum covering matriz of G is the n X n matrix
A (G) = (ai;), where
1 if viv; € B
Q55 = 1 lf?,:j and v; € C (11)

0 otherwise.

The characteristic polynomial of A.(G) is denoted by

Fu(GA) == det(A\] — Au(G)) .

The minimum covering eigenvalues of the graph G are the eigenvalues of A.(G). Since
A.(G) is real and symmetric, its eigenvalues are real numbers and we label them in

non-increasing order \; > Ay > --- > \,. The minimum covering energy of G is then
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defined as
EG) =3 A (1:2)
i=1

In this paper, we are interested in studying mathematical aspects of the minimum
covering energy of a graph. It is possible that the minimum covering energy that we
are considering in this paper may have some applications in chemistry as well as in
other areas.

The paper is organized as follows. In Section 2 we discuss some basic properties of
minimum covering energy and derive an upper bound and a lower bound for E.(G). In
Section 3 we compute the minimum covering energies of (i) star graphs, (ii) complete
graphs, (iii) complete bipartite graphs, (iv) crown graphs, and (v) cocktail party
graphs.

2 A chemical connection

The formulas (1.1) by which the minimum covering matrix is defined, can be viewed
also as the definition of the ordinary adjacency matrix of a graph with loops. Indeed,
A.(G) is the adjacency matrix of a graph, obtained from G by attaching a loop of
weight +1 to each of its vertices belonging to the cover C.

Graphs with loops are the natural representations of heteroconjugated molecules,
and have been much studied in chemical graph theory. In particular, rules for con-
structing their characteristic polynomials were elaborated in due detail [19-27]. Loops
of weight +1 are just the graph representation of nitrogen atoms.

The HMO theory of graphs with loops (i. e., molecular graphs of heteroconjugated
molecules) were also studied in detail, including the total m-electron energy [28-30].

All these results can be directly applied to the presently introduced minimal
covering eigenvalues and minimal covering energy. For instance, based on a result
from [30], the minimal covering energy, as defined by Eq. (1.2), can be represented

by a Coulson—type integral formula:

“+o00

5@ =2 [ o= e

—0o0
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where i = v/—1. This formula holds for any covering set C', that is, for any value of
C1.

3 Some basic properties of minimum covering
energy

We first compute the minimum covering energy of two graphs, depicted in Fig. 1.

v,e—ev,

v V;

f <

Fig. 1. Graphs considered in Examples 3.1 and 3.2.

Example 3.1. Let G be the j-vertex path Py, with vertices vy, vy, v3, vy (see Fig. 1),

and let its minimum covering set be C' = {vy,v3}. Then

1 100

1
APy = X
1

S = O

1
0
0

o = O

The characteristic polynomial of A.(Py) is A —2X3 — 20% + 3\ + 1, the minimum

covering eigenvalues are (1 —/7+2v5)/2, (1+V7+2V5)/2, (1 -7 —-2V5)/2,

(1++7—2V5)/2, and therefore the minimum covering energy is
E.(Py) = \/7+2¢5+ \/7—2\/5 .

If we take another minimum covering set, namely C* = {vy, v3}, then

0100
1110
Acr(Py) = 0111
0010

The characteristic polynomial of Aw(Py) is AX* — 223 — 202 + 2\ + 1, the minimum
covering eigenvalues are 1, —1, 1—+/2, 14++/2, and this time the minimum covering

energy is equal to 2 + 2v/2 .
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Example 3.1 illustrates the fact that the minimum covering energy of a graph G
depends on the choice of the minimum covering set. i. e., that the minimum covering

energy is not a graph invariant.

Example 3.2. Let G be a cycle Cy on 4 wvertices vi,vs,v3,v4 (see Fig. 1), with

minimum covering set C' = {vy,vs}. Then

AC(C4) =

— O~
O = O =

)
O = O =

1
The characteristic polynomial of A.(Cy) is X —2X\3 —3X\2+4\, the minimum covering
eigenvalues are 0, 1, (1 ++/17)/2, (1 — /17)/2, and thus the minimum covering
energy is E.(Cy) =1+ V17.

Theorem 3.3. Let G be a graph with vertex set V', edge set E, and a minimum
covering set C. Let f,(G,\) = co A" +c1 ANV 4+ o A" 2+ - - +¢, be the characteristic
polynomial of G. Then

(Z) Co = 1;

(i) v = =|C],

(1) co = (|§|) — |E|, and

C

(iv) c3 = |C||E| — Zd(v) - (’ 3 |) —2A, where A is the number of triangles in G.
vel

Proof. (i) Directly from the definition of f,, (G, ), it follows that ¢y = 1.

(ii) Since the sum of diagonal elements of A.(G) is equal to |C|, the sum of deter-
minants of all 1 x 1 principal submatrices of A.(G) is the trace of A.(G), which
evidently is equal to |C|. Thus, (—1)'¢; = |C].

(iii) (—1)2 ¢y is equal to the sum of determinants of all 2 x 2 principal submatrices

of A.(G), that is

6= 3

1<i<j<n

Qi Qij
= Y (aiay —ajay)

1<i<j<n

C
= Z @i jj — Z a?j:(|2|)_|E|'

1<i<j<n 1<i<j<n

Aji  Gjj
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(iv) We have
Qi Q5 Qi

cs = (=1 > aji aj g

1<i<j<k<n |Q; Qg; GQkk

= - Z aii [(aj; ape — arj ajr) — aij (a5 ape — ar; agy,)
1<i<j<k<n

+  air (aji ag; — ax; ajj)]

= - E Qg Ajj Ak + E @i @k + ajj aix + apk aij)

1<i<j<k<n 1<i<j<k<n
- E Q5 Qi Qi — E ik Akj Aji
1<i<j<k<n 1<i<j<k<n

C
_ <|3l)+ D Lot an+apay] - 24

1<i<j<k<n
__(len
3

cs =|C||E| =) d(v) — ('g') —2A .

velC

i=1 1<j<k<n

Z” ) ajk]—Z%Zaw—%-
i=1 k=1
ki

Thus

Theorem 3.4. If A\, \a, ..., A, are the eigenvalues of A.(G), then

> X =2lE|+|C|.
i=1
Proof. The sum of squares of the eigenvalues of A.(G) is just the trace of A.(G)?.

Therefore,

DN =D aa;

i=1 i=1 j=1

n

= 2 (ay)’+ Y _(ax)’ =2|E|+|C|.

i<j i=1
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Bounds for E.(G), similar to McClelland’s inequalities [31] for graph energy, are

given in the following two theorems.

Theorem 3.5 (Upper bound). Let G be a graph with n vertices, m edges, and let C

be a minimum covering set of G. Then
E.(G) < v/n(2m+|C|) .

Proof. Let A\y > Ag > A3 > --- > ), be the eigenvalues of A.(G). Bearing in mind

the Cauchy—Schwarz inequality,

(£0) = (5%) (54

we choose a; = 1 and b; = |\;|, which by Theorem 3.4 implies

n 2 n n
= (Z IAi|> <n (Z IMQ) —ny AN =n2m+|C]).
i=1 i=1 i=1
This completes the proof. O

Theorem 3.6 (Lower bound). Let G be a graph with n vertices and m edges, and let
C' be a minimum covering set of G. If D = |detA.(G)|, then

E.(G) > \/Qm +|C| + n(n — 1)D?/" .
Proof.

EG) = (Zm>=(2m) (;w) Z\AHZMM

i#£]
Employing the inequality between the arithmetic and geometric means, we obtain

1/ln(n-1)]
ZIAHAI><HIAIIA !) :

Z#J i#]
Thus

1/ln(n-1)]
[EG) = ZIA > +n(n—1) (HIAHA I)

i#]

S - 1 (H w—n)

=1 =1
= > P 4nm -1 (][N
=1 i=1

= 2m+|C|+n(n—1)D*" .

v

2/n
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Hence the result. O

Bapat and Pati showed that if the graph energy is a rational number, then it is an
even integer [32] (see also [33]). The analogous result for minimum covering energy

is:
Theorem 3.7 (Parity theorem). Let G be a graph with a minimum covering set C.
If the minimum covering energy E.(G) of G is a rational number, then

E.(G)=1|C| (mod 2) .

Proof. Let A\, Ag, ..., \. be positive, and the rest of the minimum covering eigenvalues

non-positive. Thus
E(G) =3 [l = Ot e+ A) = (At -+ A)
i=1
implying
E(G)=2M+ A+ + ) —|C].

Since Ai, Ag, ..., A\, are algebraic integers, so is their sum. Hence (A; + A + -+ A\,.)

must be an integer if E.(G) is rational. Hence the theorem. [

4 Minimum covering energies of some families of
graphs

Theorem 4.1. For n > 2, the minimum covering energy of a star graph K, is

equal to \/4n — 3.

Proof. Let K, be a star graph with vertex set V' = {wg, v1,v9,- -+ ,v,-1}, center

v, and the minimum covering set C' = {vp}. Then

111 -+ 1

1 0
AC(Kan): 100 --- 0

100 --- 0

nxn



The characteristic polynomial of A.(Kj ,—1) is

A1 =1 =1 o —1 —1

-1 A0 - 0 0

-1 o X -~ 0 0

fn(Kl,n—la )‘) = . . . . .

—1 0 0 A 0

-1 0 0 0 A
nxn
B L R A1 -1 -1
A 0 0 0 —1 A 0
_(—02 [0 X 0 0| p(—)™a -1 0 A
0 0 A 0 -1 0 0

From this we get the recurrence relation
Ja(Kino1,A) = =X"2 + A fro1 (Ko, A)
Changing n to (n — 1) in (4.1), we obtain
fot(Kino,A) = = A"+ X\ fr o(Ki 3, \) .
Combining (4.2) with (4.1), we deduce
fo(Kin1,)) = =2\ 24 22 f (K1, 3,)) .
Continuing this process, we find that

fn(Kl,n—h )\) = —(TL — 2))\n—2 -+ )\n—2 f2<K1,1, /\)
— _(n_2)>\n—2+>\n—2()\2_)\_1)
= A2 A= (n—1)].
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(4.1)

Therefore, the minimum covering eigenvalues are = (1 + V4n — 3) , % (1 —V4n — 3) )

2
and 0 (n — 2 times) . Consequently, E.(Ky,-1) =+4n —3.

]

Corollary 4.2. Each positive integer 2p — 1 (> 3) is the minimum covering energy

of a star graph.

Proof. The minimum covering eigenvalues of K ,2_, are [p,1 —p,0,0,...,0]. O
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If the minimum covering eigenvalues are ordered by A\; > Ay > --- > \., and
if their multiplicities are my, ms, ..., m, , respectively, then the minimum covering
spectrum of the graph G will be written as

Mo e A
MC Spec(G) = ( )

ml m2 o mr

or

MC Spec(G) = (AT, A2, ..., A .

Theorem 4.3. For n > 2, the minimum covering enerqy of the complete graph K,

is \/(n+3)(n—1).

Proof. Let K, be the complete graph with vertex set V = {vy,vq, -+ ,v,}, and the

minimum covering set C' = {vy,vg, -+ ,v,_1}. Then
111 - 11
111 -+ 11
111 -+ 11
A(K,) =
111 - 11
111 10
nxn
The respective characteristic polynomial is
A—1 -1 -1 - -1 -1
-1 Xx-1 -1 - =1 -1
-1 -1 =1 --- =1 -1
fn(Km/\) = : : . . . :
-1 -1 -1 - A=1 -1
-1 -1 -1 - =1 A
nxn
A—1 -1 -1 -1 -1
-1 Xx—1 -1 -1 -1
-1 -1 A-1 -1 —1
-1 -1 -1 A—1 -1
0 0 0 A A+1 .
A—1 -1 -1 -1 A—1 -1 -1 -1
-1 Xx-1 -1 -1 -1 -1 -1 -1
=\ N R A G VN
-1 -1 A—1 —1 -1 -1 A—1 -1
—1 —1 -1 -1 —1 -1 -1 -1
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= XA+ DN2A = (n—1))]
NN = (n= DA = (n—1)] .

Hence

0 n—1 + v/ (n+3)(n—1) v/ (n+3)(n—1)
2 2 2

n—2 1 1

and the minimum covering energy of the complete graph is

n—1 _
2

MC Spec(K,) =

E(K,)=+/(n+3)(n—1).
O

Theorem 4.4. The minimum covering energy of the complete bipartite graph K,,

is (m—1) +v4mn + 1. In particular, if n = m + 1 the energy is an integer 3m.

Proof. For the complete bipartite graph K,,, (m < n) with vertex set V' = {uy, ug,

ey Uy V1, V2, oy U by C = {ug, ug, ... Uy} is @ minimum covering set. Then
100 .--- 0111 .--- 1
o100 --- 0111 --1
0 01 0111 -1
0 0 O 1 111 --- 1
AC(Km’n) 1 11 1000 --- 0
1 11 1000 --- 0
1 11 1000 --- 0
111 .- 1000 -.--- 0 (metm) x ()
The characteristic polynomial of A.(K,,,) is

A—1 0 0 - 0 -1 -1 -1 .- -1
0 A=1 0 - 0 —1 -1 =1 --- —1
0 0 A—1 --- 0 -1 -1 -1 .-+ -1
0 0 0 A—-1 -1 -1 -1 --- -1

fm—‘rn(Km,n?)\) - -1 -1 -1 —1 A 0 0 0
-1 -1 —1 -1 0 A 0 0
-1 -1 —1 -1 0 0 A 0
-1 -1 —1 —1 0 0 0 A
A =Dl —Jhsn

B _Jn><m /\]n
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where J,x,, is the matrix with all entries equal to unity. We have

()‘ - 1)]771 _Jvz;xn I T
= (A=D1, |\, — (—=])——(—J
L [(A = 1) L] (=) (=T")

= A=-1D)""|AA= 1), = JJT|
= A=D"" Py AA = 1)
= (A=D""Poy A= 1)]

where P, ()) is the characteristic polynomial of the matrix m J,, . Therefore

foen(Emns ) = (A= 1" [AA = 1) = ma][A(X = D))"
= A=D1 IAIAZ — X — )

and T
1 mn+
0 1 L4

n—1 m-—1 1 1
Theorem 4.4 follows. O

MC Spec(Kppn) = (

The crown graph S° for an integer n > 3 is the graph with vertex set
{ug, ug, ..., Up,v1, Vs, ..., 0, } and edge set {w;v; : 1 <4,5 <n, i#j}. Therefore S°

coincides with the complete bipartite graph K, , with the horizontal edges removed.

Theorem 4.5. For n > 3, the minimum covering energy of the crown graph SO is

equal to (n — 1)v/5 + 4n — 3.

Proof. For the crown graph SO with vertex set V' = {uy, us, ..., Uy, v1, Vs, ..., 0,} We

choose C' = {uq,us,...,u,} as a minimum covering set. Then



o1

1 00 0 011 1
010 01 01 1
00 1 - 01 10 1
0 0 0 O 1 1 11 0
AC(S") 01 1 1 0 00 0
1 0 1 1 0 00 0
1 1 0 1 0 0O 0
111 0000 0/, .
and
A—1 0 0 0 0 -1 -1 -1
0 A—1 0 0 -1 0 -1 -1
0 0 A—1 0 -1 -1 0 -1
0 0 0 e A—=1 -1 -1 -1 0
0 _
f2n(5n7>‘) - 0 -1 -1 —1 A 0 0 0
-1 0 -1 —1 0 A 0 0
IR 1 0 0 A 0
-1 -1 -1 0 0o 0 0 A lyon
(A= 1), —K?
I I SV

where K, is the ordinary adjacency matrix of the complete graph K,, . Observe that
KT = K,, and that
A—-11I, —-KI

f2n(527 )‘) =
-K, A,

— (A=D1,

M, — | —K,
s

K, K’

= =D A1

AN, —

= [MA= DL = Kj| = P [A(A = 1)]
where Pgz ()) is the characteristic polynomial of the matrix K2. Therefore

fan(SpN) = PA=1) = 1" AA = 1) = (n = 1)7]
= M= A=1"'N-A-(n-1)7].
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Hence

14_@ V5 %—l— 4n2—8n+5 %_ 4n28n+5>

1
MC Spec(S®) = * * * ~?
n—1 n-1 1 1

and the minimum covering energy of a crown graph is

E.(5%) = (n—1)V5+4V4n2 —8n +5 .
O

The cocktail party graph, denoted by K, .2, is graph having vertex set V =
Ui {wi, v;} and edge set E = {u;u;, vv;, wv;,viu; : 1 <i < j <n}. This graph is

also called as complete n-partite graph.

Theorem 4.6. The minimum covering energy of the cocktail party graph K,.s is

(2n—3)+vin?+4n —17.

Proof. Let K,y be the cocktail party graph with vertex set V = [J;", {u;, v;} and let

the minimum covering set be C' = |JI—;' {u;, v;}. Then

1 011 1 111

0111 1111

1 110 1111

1 101 1111

1111 1 011

1 111 01 11

1 111 1100

1 111 1 100 S

The characteristic polynomial of A.(K,x2) is
A-1 0 -1 -1 - -1 -1 -1 -1
0 Xx—1 -1 -1 - -1 -1 -1 -1
1 -1 A-1 0 - -1 -1 -1 -1
—1 —1 0 A—1 —1 -1 -1 -1
on(KnXZ,)\) -
-1 -1 -1 —1 A—1 0 -1 -1
-1 -1 -1 —1 0 A—1 -1 -1
—1 —1 —1 —1 -1 —1 A 0
—1 —1 —1 —1 —1 —1 0 A
2nx2n
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M PT
P AIQ 2nx2n
where
A—1 0 -1 -1 - -1 -1
0 A—1 -1 -1 - -1 -1
-1 -1 Ax-=1 0 . -1 -1
M = —1 —1 0 A—1 - —1 —1
-1 —1 -1 -1 - A=1 0
-1 —1 -1 -1 - 0 A—1 (2m—2)x (2n-2)
and
-1 -1 -1 -1 --- -1 -1
P= .
-1 -1 -1 -1 -+ =1 -1 2% (2n-2)
Note that
flKen) = |1 P2 g, — partpr)
2n ’l7/><27 P A]Q
= A=2n+3)A+D" 2N =1D" |\ — PM'PT|
A\ — (2n—2) _ (2n-2)
A—2n+3 A—2n-+3
= A=2n+3)A+D" 2\ -1
_ (2n—-2) A\ — (2n—2)
A—2n-+3 A—2n+3
= AAFD"2A=D" N2 - (2n—3)A —4(n—1)] .
Therefore
0 -1 1 2n—3 + VAn244n—7 2n—3  /4n244n—7
MC Spec(Knx2) = 2 2 2 2
1 n—2 n—-1 1 1
and Theorem 4.6 follows. O]
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