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ABSTRACT. An unsteady hydromagnetic free convection flow of elastico-viscous fluid 
past an infinite vertical plate is investigated when the temperature and concentration are 
assumed to be oscillate with time and also the ion slip effect is taken into account.  
Assuming constant suction at the plate, closed form solutions have been obtained for 
velocity, temperature and concentration distributions in terms of the elastic parameter (α), 
Schmidt number (Sc), Magnetic parameter (M), Hall parameter (Be), and ion slip 
parameter (Bi). 
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INTRODUCTION 
 

 Heat and mass transfer from a vertical plate is encountered in various applications 
such as heat-exchangers, cooling system and electronic equipments. The study of convection 
with heat-mass transfer is very useful in the fields as Chemistry, agriculture and ocea-
nography.  few representative fields of interest in which combined heat-mass transfer play an 
important role are the design of chemical processing equipments, formation and dispersion of 
fog, distribution of temperature and moisture over agricultural fields and in drying process of 
paper. Heat and mass transfer from a vertical plate have been studied by several authors some 
of them are SOMERS [1], KHAIr and BEJAn [2], LIN and WU [3], BEHAR and STEPHAN [4], 
MUTHUKUMARSWAMY et al. [5] and CHIEN [6]. It is well known that a number of industrial 
fluid such as molten plastics, polymeric liquids, food stuffs or slurries exhibit non-Newtonian 
fluid behavior. Therefore, heat and mass transfer in non-Newtonian fluid is of practical 
importance. DAS and BISWAL [7] studied the mass transfer on visco-elastic fluid past a 
vertical channel. WANG [8] analyzed mixed convection from a vertical plate to non-
Newtonian fluid with uniform surface heat flux. In recent years the non-Newtonian fluids in 
the presence of magnetic field find increasing application in many areas such as chemical 
engineering, electromagnetic propulsions, nuclear reactor, etc. SARPAKAYA [9] has given 
many possible applications of non-Newtonian fluids in various fields. The flow of visco-
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elastic fluids in the presence of magnetic field have been studied by SINGH and SINGH [10] 
and SHERIEF and EZZAT [11].  

In an ionized gas where the density is low and (or) the magnetic field  is very  strong, 
the conductivity normal to the magnetic field is reduced due to the free spiraling of electrons 
and ions about the magnetic lines of force before suffering collisions; also a current is induced 
in a direction normal to both electric and magnetic field. This phenomenon is well known in 
the literature and is called the Hall effect. SATO [12] and SHERMAN and SATTON [13] were the 
first authors who investigated the hydromagnetic flow of ionized gas between two parallel 
plates taking Hall effect into account. Hall current has important engineering applications in 
problem of magnetohydrodynamics generators and Hall accelerators as well as in flight 
magnetoaerodynamics. The effect of Hall current for MHD free convection flow along a 
vertical surface and in the presence of transverse magnetic field with or without mass transfer 
have been studied by number of authors; POP [14], RAPTIS and RAM [15], HOSSAIN and 
RASHID [16], HOSSAIN and MOHAMMAD [17], POP and WATANABE [19], ACHARYA et al. 
[20,21], ABODELDAHAB and ELBARABARY [22] and ASGHAR et al. [23]. 

 
 In the present analysis, it is proposed to study the effect of simultaneous heat and mass 
transfer on the flow of elastico-viscous fluid past an impulsively started infinite vertical plate 
taking Hall and ion slip effects into the account. Closed form solutions have been obtained for 
the velocity, temperature, and concentration distribution. 
 

MATHEMATICAL FORMULATION 
 

 The constitutive equations for the rheological equation of state for an elastico-viscous 
fluid (Walter’s liquid B') are 
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N(τ) is the distribution function of relaxation times.  In the above equations pik is the stress 
tensor, p an arbitrary isotropic pressure, gik is the metric tensor of a fixed co-ordinate system 
xi and ,(1)

ike the rate of strain tensor. It was shown by WALTER’s [24] that equation (2) can be 

put in the following generalized form which is valid for all types of motion and stress 
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where x'i is the position at time t' of the element that is instantaneously at the print xi at time t. 
The fluid with equation of state (1) and (4) has been designated as liquid B'. In the case of 
liquids with short memories, i.e. short relaxation times, the above equation of state can be 
written in the following simplified form 
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in which τ)τ=η ∫
∞

d( N
00

 is limiting viscosity at small rates of shear, 

 t
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 denotes the convective time derivative. 

 
 We consider the unsteady flow of a viscous incompressible and electrically conducting 
elastico-viscous fluid with oscillating temperature and concentration. We consider  the  flow 
along x-axis which is taken to be along the plate and y-axis is taken normal to it. The plate 
starts moving in its own plane with velocity U0 (a constant velocity). A uniform magnetic 
field is applied normal to the plate with constant suction as shown in figure 1. The equations 
governing the flow of fluid together with Maxwell’s electromagnetic equations are as follows 

 
 
 
 
Equation of Continuity 
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Momentum Equation 
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Figure 1: Physical model of the problem 
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Generalized Ohm’s Law [13,23] (where the Hall and ion slip terms are retained) 
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where V = (u, v,w) is the velocity field, P is the pressure field, g is acceleration due to gravity, 
β the volumetric coefficient of the thermal expansion, β∗ the volumetric coefficient of 
expansion with concentration, ρ the density of the fluid, J is the current density, B is the 
magnetic field, E is the electric field, µm is the magnetic permeability, pij is stress tensor, β is 
the Hall factor, Be is the Hall parameter, Bi is the ion slip parameter and σ is the electrical 
conductivity. Therefore the flow becomes three dimensional. It is assumed that there is no 
applied or polarization voltage so that E = 0 and the induced magnetic field is negligible so 
that the total magnetic field B = (0,B0, 0) where B0 is the applied magnetic field parallel to y-
axis. This assumption is justified when the magnetic Reynolds number (The ratio of the 
moduli of the convection term and diffusive term. This number is non-dimensional and 
strictly analogous in the properties and uses to the Reynolds number) is very small. Then 
equation (9) reduces to 
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Under this condition the Boussinesq approximation equations governing the flows are as 
follows 
 
Equation of Continuity 
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⇒ v = - v0 where v0 is constant suction velocity. 
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Energy Equation 
 

2

2

p yC
K

y
 v

t ∂
θ∂

ρ
=

∂
θ∂

+
∂
θ∂

                        (15) 

Concentration Equation 

2

*2**

y
C D

y
C v

 t
C

∂

∂
=

∂
∂

+
∂
∂

                        (16) 



9 
 
where 
 t)y,CC t)(y, C , t)y,T t)(y, T *(=−(θ=−
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ρ is the density of the fluid, ν is the kinematic viscosity, k0 the elastic parameter, K the 
thermal conductivity, Cp is the specific heat of the fluid, D the chemical molecular diffusivity 
and g is the acceleration due to gravity. In equation (15) the terms due to viscous dissipation 
are neglected and in equation (16) the term due to chemical reason is assumed to be absent. 
 
The initial boundary conditions are 
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where ω is frequency of oscillation, a and b are constant and subscript ∞ denotes the physical 
quantity in the free stream. 
 

We introduce the following non-dimensional parameters 
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Substituting equation (19) in (14) – (17) and (18) and dropping the dashes we get 
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and the boundary conditions for equation (20) –(23) are 
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SOLUTION 
 
 The equation (20) and (21) can be combined using the complex variable 
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Equations (20) –(21) give 

4
C Gc

4
G

)BeBi)(1(4
iBe)BeBi)((1 M

 t4
1

 t 22

3

2

2

−−=
++
−+

−
∂
∂

+
∂
∂

−
∂∂

∂
−

∂
∂ θψ

η
ψψ

η
ψα

η
ψ

Be
     (26) 

Introducing 2
0v

4ω
=Ω  where Ω is non-dimensional frequency of oscillation and using Eq. 

(25), we get boundary conditions as 
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Putting )η=,η(θ Ω ( fe    t) ti in equation (22), we get 
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Separating real and imaginary part, the real part is given by 
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In order to solve equation (26), substituting )( Fe ti η=ψ Ω and using boundary conditions 
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Knowing the velocity field it is important from a practical point of view to know the 
effect of physical parameters, Sc, M, m and α on skin friction. We now calculate the skin 
friction from these relations 
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Similarly z-component of skin friction τ2 is given as 
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The rate of heat transfer in terms of Nusselt number is given by 
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The rate of mass transfer is given by 
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The coefficient of mass transfer which is generally known as Sherwood number Sh is given by 
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