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ABSTRACT. In this paper, the transient flow of a dusty viscous incompressible 
electrically conducting fluid through a circular pipe is studied taking the Hall effect into 
consideration. A constant pressure gradient in the axial direction and an uniform magnetic 
field directed perpendicular to the flow direction are applied. The particle-phase is assu-
med to behave as a viscous fluid. A numerical solution is obtained for the governing non-
linear equations using finite differences. 
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INTRODUCTION 
 

The flow of a dusty and electrically conducting fluid through a circular pipe in the 
presence of a transverse magnetic field has important applications such as magnetohydro-
dynamic (MHD) generators, pumps, accelerators, and flowmeters. The performance and 
efficiency of these devices are influenced by the presence of suspended solid particles in the 
form of ash or soot as a result of the corrosion and wear activities and/or the combustion 
processes in MHD generators and plasma MHD accelerators. When the particle concentration 
becomes high, mutual particle interaction leads to higher particle-phase viscous stresses and 
can be accounted for by endowing the particle phase by the so-called particle-phase viscosity. 
There have been many articles dealing with theoretical modeling and experimental 
measurements of the particle-phase viscosity in a dusty fluid [1-4].  

The flow of a Newtonian conducting fluid in a circular pipe has been investigated by 
many authors [5-8]. GADIRAJU et al. [5] investigated steady two-phase vertical flow in a pipe. 
DUBE et al. [6] and RITTER et al. [7] reported solutions for unsteady dusty-gas flow in a 
circular pipe in the absence of a magnetic field and particle-phase viscous stresses. CHAMKHA 
[8] obtained exact solutions which generalize the results reported in [6] and [7] by the 
inclusion of the magnetic and particle-phase viscous effects. In the above mentioned work the 
Hall effect was ignored in applying Ohm's law, as it has no marked effect for small and 
moderate values of the magnetic field. The flow of a non-Newtonian conducting fluid in a 
circular pipe has been done by METZNER [9], NAKAYAMA and KOYAMA [10], and ATTIA 



16 
 
[11,12] in a series of However, the current trend for the application of magnetohydrodynamics 
is towards a strong magnetic field, so that the influence of electromagnetic force is noticeable 
under these conditions, and the Hall current is important and it has a marked effect on the 
magnitude and direction of the current density and consequently on the magnetic force term 
[13]. 
 

In the present study, the transient flow of a dusty fluid through a circular pipe is 
investigated considering the Hall effect. The carrier fluid is assumed viscous, incompressible 
and electrically conducting. The particle phase is assumed to be incompressible pressureless 
and electrically non-conducting. The flow in the pipe starts from rest through the application 
of a constant axial pressure gradient while a uniform magnetic field is applied perpendicular 
to the flow direction. The governing nonlinear momentum equations for both the fluid and 
particle-phases are solved numerically using the finite difference approximations. The effect 
of the Hall current, and the particle-phase viscosity on the velocity of the fluid and particle-
phases are reported. 
 
Notation 
a: pipe radius, 
Bo: magnetic induction, 
C: fluid-phase skin-friction coefficient, 
Cp: particle-phase skin-friction coefficient, 
Ha: Hartmann number, 
m: Hall parameter, 
N: momentum transfer coefficient, 
P: pressure gradient, 
Q: fluid-phase volumetric flow rate, 
Qp: fluid-phase volumetric flow rate, 
r: distance in the radial direction, 
t: time, 
V: fluid-phase velocity, 
Vp: particle-phase velocity, 
z: axial direction, 
α: inverse Stokes number, 
B: viscosity ratio, 
φ : particle-phase volume fraction, 
k: particle loading, 
µ: fluid-phase viscosity, 
µp: particle-phase viscosity, 
ρ: fluid-phase density, 
ρp: fluid-phase density, 
σ: fluid electrical conductivity. 

 
 

GOVERNING EQUATIONS 
 

Consider the unsteady, laminar, and axisymmetric horizontal flow of a dusty conduc-
ting fluid through an infinitely long pipe of radius a driven by a constant pressure gradient as 
shown in Fig. 1.  A uniform magnetic field is applied perpendicular to the flow direction.  The 
Hall current is taken into consideration and the magnetic Reynolds number is assumed to be 
very small, consequently the induced magnetic field is neglected [13].  We assume that both 
phases behave as viscous fluids and that the volume fraction of suspended particles is finite 
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and constant [8].  Taking into account these and the previously mentioned assumptions, the 
governing momentum equations can be written as 
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Fig. 1. - Problem definition 
 
 
where ∂P/∂z is the fluid pressure gradient, N is a momentum transfer coefficient (the 
reciprocal of the relaxation time, the time needed for the relative velocity between the phases 
to reduce e-1 of its original value [8], m=σβBo is the Hall parameter, and β is the Hall factor 
[13]. In this work, ρ, ρp, µp, φ, and Bo are all constant.  It should be pointed out that the 
particle-phase pressure is assumed negligible and that the particles are being dragged along 
with the fluid-phase. 
The initial and boundary conditions of the problem are given as 
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where a is the pipe radius. 
 
 Equations (1)-(3) constitute a nonlinear initial-value problem which can be made 
dimensionless by introducing the following dimensionless variables and parameters 
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µρα /2Nd=  is the inverse Stoke's number, 

µµ /pB =  is the viscosity ratio, 

µσ /aBHa o=  is the Hartmann number [13]. 
 
By introducing the above dimensionless variables and parameters as well as the expression of 
the fluid viscosity defined above, Eqs. (1)-(3) can be written as (the bars are dropped), 
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 The volumetric flow rates and skin-friction coefficients for both the fluid and particle 
phases are defined, respectively, as [8] 
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RESULTS AND DISCUSSION 

 
Equations (4) and (5) represent a coupled system of partial differential equations 

which are solved numerically under the initial and boundary conditions (6), using the finite 
difference approximations. The Crank-Nicolson implicit method [14,15] is used at two succe-
ssive time levels. The resulting block tri-diagonal system is solved using the generalized 
Thomas algorithm [14,15]. Computations have been made for α=1 and k=10. Grid-indepen-
dence studies show that the computational domain 0<t<∞ and 0<r<1 can be divided into inter-
vals with step sizes ∆t=0.0001 and ∆r=0.005 for time and space respectively. It should be 
mentioned that the results obtained herein reduce to those reported by [6] and [8] for the cases 
of non-magnetic, inviscid particle-phase (B=0), and when neglecting the Hall effect (m=0). 
These comparisons lend confidence in the accuracy and correctness of the solutions. 

Imposing of a magnetic field normal to the flow direction gives rise to a drag-like or 
resistive force and it has the tendency to slow down or suppress the movement of the fluid in 
the pipe, which in turn, reduces the motion of the suspended particle-phase. This is translated 
into reductions in the average velocities of both the fluid- and the particle-phases and, conse-
quently, in their flow rates. In addition, the reduced motion of the particulate suspension in 
the pipe as a result of increasing the strength of the magnetic field causes lower velocity 
gradients at the wall. This has the direct effect of reducing the skin-friction coefficients of 
both phases.  
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Figure 2 presents the time evolution of the profiles of the velocity of the fluid V and 
dust particles Vp respectively for various values of the Hartmann number Ha and the Hall 
parameter m and for B=0.5. Both V and Vp increase with time and V reaches the steady-state 
faster than Vp for all values of m or Ha.  It is clear from Fig. 2 that increasing m decreases 
both V and Vp and their steady-state times as a result of increasing the effective conductivity 
(σ/(1+m2)) which decreases the damping force on V and then increases V. On the other hand, 
increasing Ha decreases V and Vp since the damping force on V is proportional to Ha2 and then 
increasing Ha increases the damping force which increases V. It is shown in Fig. 2 that the 
effect of m on V or Vp becomes more pronounced for higher values of Ha. It is also clear that 
the effect of m on V and Vp becomes more pronounced for higher values of Ha. This is 
expected since the importance of the Hall term is more clear in the case of high magnetic 
fields. 
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Fig. 2. - Effect of the parameters Ha and m on the time development of: 
(a) V at r=0 and (b) Vp at r=0. (β=0.5) 

 
 Figure 3 presents the time evolution of the profiles of the velocity of the fluid 

V and dust particles Vp, respectively, for various values of the particle-phase viscosity B and 
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the Hall parameter m and for Ha=3.Figure 3 shows that increasing the parameter B decreases 
V and Vp  for all values of m, as a result of increasing the viscosity which increases  the 
resistive viscous forces and then decreases the velocities of both phases. The effect of B on Vp 
is more pronounced than its effect on V. 
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Fig. 3. - Effect of the parameters β and m on the time development of: 
(a) V at r=0 and (b) Vp at r=0. (Ha=3) 

 
Tables 1 and 2 present the steady state values of the fluid-phase volumetric flow rate 

Q, the particle-phase volumetric flow rate Qp, the fluid-phase skin friction coefficient C, and 
the particle-phase skin friction coefficient Cp for various values of the parameters B and m and 
for Ha=1 and 5, respectively.  It is clear that increasing the parameter m increases Q, Qp, C, 
and Cp for all values of B and Ha.  This comes from the effect of increasing m in increasing 
the velocities and their gradients which increases the average velocities of both the fluid- and 
the particle-phases and, consequently, increases their flow rates and skin-friction coefficients 
of both phases. It is also shown that increasing the parameter B decreases the quantities Q, Qp, 
and C, but increases Cp for all values of m and Ha. This can be attributed to the fact that 
increasing B increases viscosity and therefore the flow rates of both phases as well as the 
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fluid-phase wall friction decreases considerably. However, since Cp is defined as directly 
proportional to B, it increases as B increases at all times. 

 
Table 1. - The steady state values of Q, Qp, C, Cp for various values of m and B and for Ha=1 

 

  

Β=0.5 m=0 m=1 m=3 
Q 0.1675 0.1732 0.1781 
Qp 0.0403 0.0418 0.0429 
C 0.2726 0.2786 0.2836 
Cp 0.2003 0.2070 0.2128 

B=1 m=0 m=1 m=3 
Q 0.1564 0.1614 0.1656 
Qp 0.0215 0.0222 0.0228 
C 0.2622 0.2675 0.2719 
Cp 0.2129 0.2196 0.2253 

 
 

Table 2. -  The steady state values of Q, Qp, C, Cp for various values of m and B and for Ha=5 
 

B=0 m=0 m=1 m=3 
Q 0.1422 0.1869 0.2494 
Qp 0.1126 0.1445 0.187 
C 0.2494 0.2969 0.3602 
Cp 0 0 0 

B=0.5 m=0 m=1 m=3 
Q 0.11 0.1361 0.1686 
Qp 0.0259 0.0325 0.0406 
C 0.2107 0.2395 0.2738 
Cp 0.1326 0.1634 0.2016 

B=1 m=0 m=1 m=3 
Q 0.1053 0.1288 0.1574 
Qp 0.0142 0.0175 0.0216 
C 0.2062 0.2326 0.2632 
Cp 0.1439 0.1757 0.2142 

 
 
 Figure 4 presents the steady state profiles of the velocities V and Vp, respectively, for 
various values of the Hall parameter m. In this figure, Ha=3 and B=0.5. Due to symmetry, 
only half of each profile is presented. The figure indicates the effect of the Hall parameter m, 
discussed above, in increasing the velocity V and Vp for all distances r from the central line of 
the pipe.  
 

 
CONCLUSION 

 
 The transient MHD flow of a particulate suspension in an electrically conducting fluid 
in a circular pipe is studied considering the Hall effect. The governing partial differential 
equations are solved numerically using finite differences. The effect of the magnetic field 

B=0 m=0 m=1 m=3 
Q 0.2471 0.2589 0.2692 
Qp 0.1855 0.1933 0.2000 
C 0.3579 0.3697 0.3798 
Cp 0 0 0 
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parameter Ha, the Hall parameter m, and the particle-phase viscosity B on the transient 
behavior of the velocity, volumetric flow rates, and skin friction coefficients of both fluid and 
particle-phases is studied.  It is shown that increasing the magnetic field decreases the fluid 
and particle velocities, while increasing the Hall parameter increases both velocities. It is 
found that increasing the parameter m increases Q, Qp, C, and Cp for all values of Ha and B. 
The effect of the Hall parameter on the quantities Q, Qp, C, and Cp becomes more pronounced 
for higher values of Ha or smaller values of B. 
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Fig. 4. - Effect of the parameter m on the steady state profiles of: 

(a) V and (b) Vp. (Ha=3 and β=0.5) 
 
 
References: 
 

[1] SOO, S.L. (1969): Pipe flow of suspensions. Appl. Sci. Res. 21: 68-84. 

[2] GIDASPOW, D. (1986): Hydrodynamics of fluidization and heat transfer: super computer 
modeling. Appl. Mech. Rev. 39: 1-23. 

[3] GRACE, J.R. (1982): Fluidized-Bed Hydrodynamic, Handbook of Multiphase Systems. G. 
Hetsoroni, Ed., Ch. 8.1, McGraw-Hill, New York.  



23 
 

[4] SINCLAIR, J.L. and JACKSON, R. (1989): Gas-particle flow in a vertical pipe with particle-
particle interactions. AICHE J. 35: 1473-1486. 

[5] GADIRAJU, M., PEDDIESON, J., and MUNUKUTLA, S. (1992): Exact solutions for two-
phase vertical pipe flow. Mechanics Research Communications, 19 (1): 7-13. 

[6] DUBE, S.N. and SHARMA, C.L. (1975): A note on unsteady flow of a dusty viscous liquid 
in a circular pipe. J. Phys. Soc. Japan, 38 (1): 298-310. 

[7] RITTER, J.M. and PEDDIESON, J. (1977): Transient two-phase flows in channels and 
circular pipes. Proc. 1977 the Sixth Canadian Congress of Applied Mechanics. 

[8] CHAMKHA, A.J. (1994): Unsteady flow of a dusty conducting fluid through a pipe. 
Mechanics Research Communications, 21 (3): 281-286. 

[9] METZNER, A.B. (1965): Heat Transfer in non-Newtonian fluid. Adv. Heat Transfer, 2: 
357-397. 

[10] NAKAYAMa, A., and KOYAMA, H. (1988): An analysis for friction and heat transfer 
characteristics of power-law non-Newtonian fluid flows past bodies of arbitrary 
geometrical configuration. Warme-und Stoffubertragung, 22: 29-37. 

[11] ATTIA, H.A. (2003): Unsteady flow of a dusty conducting non-Newtonian fluid through a 
pipe. Can. J. Phys. 81 (3): 789-795. 

[12] ATTIA H.A., and AHMED, M.E.S. (2005): Circular pipe MHD flow of a dusty Bingham 
fluid. Tamkang Journal of Science and Engineering, Tamkang University, Amvo 
Publishing Company, Taiwan. 

[13] SUTTON, G.W. and SHERMAN, A. (1965): Engineering Magnetohydrodynamics. 
McGraw-Hill, New York. 

[14] MITCHELL A.R. and GRIFFITHS, D.F. (1980): The finite difference method in partial 
differential equations, John Wiley & Sons, New York. 

[15] EVANS, G.A., BLACKLEDGE, J.M. and YARDLEY, P.D. (2000): Numerical methods for 
partial differential equations, Springer Verlag, New York. 

 


