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ABSTRACT. The energy of a graph G is defined as the sum of the absolute values of the eigenvalues
of G. The graphs with large number of edges are referred as graph representation of inorganic clusters,
so-called cluster graphs. I. Gutman and L. Pavlovi¢ introduced four classes of graphs obtained from
complete graph by deleting edges and obtained their spectra and energies. In this paper we introduce
another class of graph obtained from complete graph by deleting edges and find its energy. Some
results of I. Gutman and L. Pavlovi¢, become particular cases of our results.

INTRODUCTION

From chemical point of view, the graphs with large number of edges are referred as graph
representations of inorganic clusters, so-called cluster graphs [6]. In this paper we consider the spectra and
energy of some cluster graphs obtained from complete graph by deleting edges.

Let G be a simple undirected graph with p vertices and q edges. Let V(G) = { vi, va, . . ., v} be
the vertex set of G. The adjacency matrix of G is defined as A(G) = [a;], in which a;; = 1 if v; is adjacent to
vj and a;; = 0, otherwise. The characteristic polynomial of G is ¢(G : A) = det(Al — A(G)), where I is a unit
matrix of order p. The roots of the equation ¢(G : 1) = 0 denoted by A;, A,, . . ., A, are the eigenvalues of
G and their collection is the spectrum of G [1]. The energy [2] of G is defined as E(G) = | A | + | A2 | +...
+] Ap | 1t represents a proper generalization of a formula valid for the total m-electron energy of a
conjugated hydrocarbon as calculated with the Hiickel molecular orbital (HMO) method in quantum
chemistry [5]. K,, is the complete graph on p vertices. The spectrum of K,, consists of eigenvalues p — 1
and — 1 (p — 1 times). Consequently E(K,) = 2(p — 1). It was conjectured some time ago that, among all
graphs with p vertices the complete graph has the greatest energy [2]. But this is not true [7]. There are p-
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vertex graphs having energy greater than E(K,). The p-vertex graph G with E(G) > E(K,) is referred as
hyperenergetic graph [3].

SOME CLUSTER GRAPHS

I. Gutman and L. Pavlovi¢ [4] introduced four classes of graphs obtained from complete graph by

deleting edges and analyzed their energies. For completeness we reproduce these here.

DEFINITION 1 [4]: Let v be a vertex of the complete graph K,, p>3 and lete;,i=1,2,...,k 1<k<p
— 1, be its distinct edges, all being incident to v. The graph Ka,(k) is obtained by deleting e;,i=1,2, ...,
k from K, In addition Ka,(0) = K,.

DEFINITION 2 [4]: Let f,i=1,2,...,k 1 <k< [ p/2 | be independent edges of the complete graph
K,, p = 3. The graph Kb,(k) is obtained by deleting f;,1=1, 2, ..., k from K,,. In addition Kb,(0) = K,.

DEFINITION 3 [4]: Let Vi be a k-element subset of the vertex set of the complete graph K,,, 2<k <p, p
> 3. The graph Kc,(k) is obtained by deleting from K, all the edges connecting pairs of vertices from V.
In addition Kc,(0) = Kc,(1) = K,.

DEFINITION 4 [4]: Let 3 <k <p, p > 3. The graph Kd,(k) is obtained by deleting from K, the edges

belonging to a k-membered cycle.

THEOREM 1 [4]:
Forp>3and0<k<p-1,
d(Kay(k) : &) = A+1)P A ~(p-3)A°~(2p—k-3)A+(k—1)(p-1- k)]. 2.1

THEOREM 2 [4]:
Forp>3and0<k<| p/2 ],
O(Kby(k) : &)= AL +1)P 2 1A + 2)F'[A* —(p-3)A —2(p—k-1)]. (2.2)

THEOREM 3 [4]:
Forp>3and 0 <k <p,
O(Kep(k) : )= M+ "2 = (p—k - DA —k(p - K)]. (2.3)

THEOREM 4 [4]:
Forp>3and3 <k <p,

k-1
O(Kdy(k) : &)= (A + 1> 'A% = (p - 4L — (3p — 2k — 3)ITI(A + 2cos(2mi/k) +1). (2.4)
i=1
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We introduce here another class of graph obtained from K, and denote it by Kay(m,k). Two

subgraphs G, and G, of G are independent subgraphs if V(G;) "V(G,) is an empty set.

DEFINITION 5: Let (Ky), i=1,2, ...,k 1<k <| p/m J, 1<m < p, be independent complete subgraphs
with m vertices of the complete graph K,,, p > 3. The graph Ka,(m,k) is obtained from K,,, by deleting all
edges of (K.n);,, 1=1, 2, ..., k. Inaddition Ka,(m,0)=Ka,(0,k) = Ka,(0,0) = K,.

Note that the graphs Kb,(k) and Kc,(k) are the special cases of the graph Ka,(m.k).
THEOREM 5:

Forp23,0SkS|_p/mJand 1<m<p,
d(Kay(mk) : 1) =A™ A +1)» ™ L+ m)* [~ (p - m -1)A — m(p + k —mk-1)]. (2.5)

PROOF: Without loss of generality we assume that the vertices of (Ky,)i ar€ Vini— 1)+ 15 V- 1)+ 25 « « - » V(i —

n+m 1=1,2,..., k. Then the characteristic polynomial of Ka,(m,k) is equal to the determinant (2.6).

Vi V2 Vm Vmtl Vmt2 Vom  Vm(k-1)+1 Vin(k-1)+m Vmk+1 Vp
A00..0 -1 -1 -1..-1 ...-1 -1 —-1...-1 -1 ... -1
oOox0..0 -1 -1 -1...-1 ...-1 -1 -1...-1 -1 ... -1
00A..0 -1 -1 -1..-1 ...-1 -1 -1...-1 -1 ... -1

-1 -1 1.0 -1 -1 ... -1

00 0...A -1 -1 —1..-1..

-1-1-1..-1 » 0 0..0... -1 -1 —-1...-1 -1 ... -1
-1-1-1..-1 0 » 0...0... -1 -1 -1..-1 -1 ... -1
-1-1-1..-1 0 0 A..O0... -1 -1 —-1..-1 -1 ...-1
-1-1-1..-1. 0 0 O0..A..-1 -1 -1..-1 -1 ... -1|(2.6)

-1 -1-1..-1 -1 -1 —-1..-1... A o -1 .. -1

0 O0...
-1-1-1..-1-1 -1 -1...-1... 0 A 0... 0 -1 .. -1
-1-1-1..-1-1 -1 -1...-1... 0 0 x... 0 -1 ... -1
-1-1-1..-1-1 -1 -1... -1... 0 0O 0... » -1 .. -l
-1-1-1..-1-1 -1 -1... -1... -1 -1 -1... -1 A=l

-1-1-1..-1-1 -1 -1... -1...-1 -1 -1..-1 -1 ... A
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The last zeros are in the (mk)™ row and (mk)™ column of the determinant (2.6). Now we perform
elementary transformations on the determinant (2.6) to prove the result (2.5).

Subtract the first column of (2.6) from all its other columns, to obtain (2.7) and let X = A + 1.

A A A X X XXX X XX XX
o x» 0.0 -1 -1 -1...-1...-1 -1 -1...-1 —Il...-1
o0 A..0 -1 -1 -1...-1...-1 -1 -1...-1 —l...-1
o o0 0.Axr -1 -1 ~-l...-1...-1 -1 —l...-1 —Il...-1
-10 0.0 X 1 1..1..0 O O0..0 0...0
-10 0..0 1 X 1..1..0 O O0..0 0..0
-10 0..0 1 1 X..1..0 O 0...0 0...0
-10 0..0 1 1 1..X...0 0 0...0 0...0 2.7
-10 0..0 0 O 0..0...X 1 1..1 0...0
-10 0..0 0 0 0...0 1 X 1..1 0...0
-1 0 0..0 0 O 0...0 1 1 X...1 0...0
-10 0..0 0 0 O0..0..1 1 1..X 0...0
-10 0..0o 0 0 0..0... 0 0 0...0 X...0
-10 0.0 0 0 0...0...0 0 0...0 O0..X|

Multiply the rows 2, 3, ..., m of (2.7) by X to obtain (2.8).
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(2.9)
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Evidently, expression (2.9) is equal to (2.10) in which the determinant is of order mk.
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(2.10)
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~X =X -X..
~X =X X..

mk-p 0 2X...0 -X —X —X..
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Add columns 2, 3, ..., mof (2.11) to the columns m+ 1, m + 2, ..., mk of (2.11) to obtain (2.12) and let

Z=1-m-X.
Mmk-p -1-1...-12 Z Z2...2..2 27..Z
mkp X 0... 000 0..0..0 0 0...0
mkp 0 X..00 00..0..00 0...0
mkp 0 0..X0 00..0..000...0
-1 0 0.0 X1 1..1..000...0
-1 0 0.0 1 X1..1...000...0
-1 0 0.0 1 1X...1...000...0
AP memt g 0 0.0 1 11..X..000..0 (2.12)
-1 0 0.00O0O0...0..X11..1
-1 0 0.00O0O0...0...1X1..1
-1 0 0..00O0O0...0...11X...1
-1 0 0.0 00 0...0...11 1..X].

Add the rows m + 1, m + 2, . . . , mk of (2.12) to its first row to obtain (2.13).
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AMm-p -1 -1...-1 0 0 0...0...0 0 0...0
mkp X 0..00 00...0...0 00...0
mkp 0 X...00 00...0...0 00...0
mk-p 0 0...X 0 00...0...0 00...0
-1 0 0..0X 11...1...000...0
-1 0 0...0 1 X 1...1...000...0
-1 0 0.0 11X...1...000...0

(2.13)

,_.
>~
)
o
o
o

Amixpmkmtll 10 0.0 11

-1 0 0..0 0 0 0...0...X 1 1...1
-1 0 0.0 0 0 0...0...1 X 1...1
-1 0 0...0 0 0 0...0...1 1 X...1

-1 0 0...0 0 O O0..0...1T 1 1..X/{.

The determinant (2.13) is in block — lower triangular form and it reduces to (2.14), in which each

determinant is of order m.

Mmp -1 -1...-1 | |X 1 1..1 [
mkp X 0..0 1 X 1.1
1 1 X..1 (2.14)

aAmixprmemt o mkep 00 X .. 0

mkp 0 O0..X| |1 1 1..X

Subtract second row from the rows 3, 4, . . ., m in both determinants of (2.14) to obtain (2.15).

Mmp -1 -1...-1| [X 1 1 ..1]*!
mkp X 0...0] |1 X 1 ... 1
Amrixpomkemtlo g X X .0 {0 1-X X-1...1 (2.15)

0 X 0...X] 10 I-X O...X-1].

Add the columns 3, 4, . . ., m to the second column in both determinants of (2.15) to obtain (2.16).
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Mmp lm -1..-1|[X m1 1 ... 1][F%!
mkp X 0.0 |1 X+m2 1 ... 1
Amixpomkemtlo g 0 X..ol|0 0 X1..1 (2.16)

Expression (2.16) is same as

k-1

X m-1
1 X+m-2

Atm-p 1-m
km —lXp—mk—mHXm-Z rnk—p X (X_ 1)(m—2)(k—])

Mm-p 1-m| [ X  ml |*!

_ xm.lxp—mkf l(X _ 1)(m'2) (k-1) mk_p X 1 X+m'2

AMm-p 1-m| |A+1 m-1| &

=k‘“'l(k+ l)p—mk—l A m-2) (k- 1) mk-p A+l 1 At+m-1
= AT QAT (- p + m)(A+) — (1- m)(mk — p)I[( +1)(h + m -1) — (m ~1)]*"

Simplification of this leads to the expression (2.5).
That expression (2.5) holds also for k = 0 is verified by direct calculation.

This completes the proof. O

SPECTRA AND ENERGY OF Ka,(m,k)

From Theorem 3, it is elementary to obtain the spectra and energy of Ka,(m.,k).

COROLLARY 6:

For 0 <k <| p/m | and 1< m < p, the spectrum of Ka,(m,k) consists of 0 (mk —k times), -1(p —
mk — 1 times), -m (k — 1 times) and

p—m—l+\/(p—m—1)2+4m(p+k—mk—l) . 0
2

COROLLARY 7:

For0<k<[ p/m | and 1<m <p,
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E(Ka,(m,k)=p-m—1+(p+m— 1) -4mk(m—1). O
The energy of Ka,(m,k) is monotonically decreasing function of k. Hence we have following .

COROLLARY 8:

For any integers m and p, I<Sm <p,

E(K,) = E(Ka,(m,0)) > E(Ka,(m,1)) > E(Kay(m,2)) > ... > E(Kap(m,L p/m ])). O

From Corollary 8 it follows that the graph Ka,(m,k) is not hyperenergetic.

REMARKS

1. Ifk =0, then the equation (2.5) reduces to (A - p + 1)(A + 1)’ ', the characteristic polynomial of the
complete graph K, [1, p.72].

2. If m =1, then the equation (2.5) reduces to the characteristic polynomial of the complete graph K.

3. If m = p and k = 1, then the equation (2.5) reduces to the characteristic polynomial of _Kp, the

complement of K, [1, p.72].

4. If m = 2 and k = p/2, then the equation (2.5) reduces to A”* (A + 2)®? (A - p + 2) which is the

characteristic polynomial of the cocktail party graph [1, p.73].

5. If p = mk, then the equation (2.5) reduces to A’ ~* (A + (p/k) - p)(A + (p/k))* "', a characteristic

polynomial of complete multipartite graph Kn;,n,,. . . ,n, ~ where, n; =n, =...=n, = (p/k) (see [1,

p-73D).

6. If m=2andk = I, then the equation (2.5) reduces to the characteristic polynomial of Ka,(1).

7. If m =2, then the equation (2.5) reduces to the equation (2.2), the characteristic polynomial of Kb,(k).

8. Ifk =1, then the equation (2.5) reduces to the characteristic polynomial of Kc,(m).

9. Ifk=1and m = 3, then the equation (2.5) reduces to the characteristic polynomial of Kd,(3).
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