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ABSTRACT. A number of fairly accurate approximations which lead to various matrix elements
are outlined with a full mathematical background. Integrations involve three types of a computa-
tional work, as follows.

(1) An electrostatic interaction between a bare proton (i.e. the undressed proton) with the system
of 8 electrons which belong to a given oxygen atom.

(2) An electrostatic interaction between the nucleus of the oxygen atom and the electron attached
to the proton.

(3) Finally, an electrostatic interaction among the electron attached to the proton and those 8
electrons which belong to the above mentioned oxygen atom.

Just how good are (or perhaps how reasonable are) the employed approximations is a question
answered at the end of the present research paper, with the conclusion that developed methods
fully justify the classical approach here employed. It should be emphasized that a strict quantum
- mechanical approach (where one should have taken all exchange intergals into account) would
infinitely complicate the theoretical background. Empirical evidence, given at the end of Part one

seems to agree fairly well with numerical evaluations of the present research paper.
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[. INTRODUCTION

There are three principal contributions as coming to the proton electrostatic
potential energy, in a hydrogen - bonded system, to be treated by classical approx-
imations.

First, there is an electrostatic interaction between a given bare proton (i.e. the
proton without any electrons) ant the oxygen atom. This includes 8 bound elec-
trons. Hence, it includes a purely proton - nucleus interaction, plus an interaction of
the proton with the (1s)? electrons, plus another interaction of the proton with the
(2s)? electrons, plus yet another interaction of the proton with the (2p)* electrons,
two of them with the magnetic quantum number m = 0, another two electrons with
m + 1. The relevant matrix elements are considered in Section II and Section III.

There is another electrostatic interaction coming from the nucleus of a given
oxygen atom and the electron that is attached to the proton in a hydrogen - bonded
system. This approach is rather starightforward quantum - mechanically and needs
no further introduction, see Section IV.

Finally, the electron - electron interaction is one of the most difficult problems for
handling within the present approach. In particular, it is a case with the electron
associated with the proton which interacts with one of the electrons bound to
the oxygen atom above mentioned. A similar problem is treated in a number of
references, with a variable success, Heitler and London (1927), Hylleraas (1928),
Sugiura (1927), and others. Our present method is based on the concept of a
contraction parameter, exposed in Section V and Section VI.

Kasanin’s excellent elementary textbook on higher mathematics (1949) was a
great help in doing a specific numerical work in the last stage of the theoretical
model.

Just how and why we could use the present set of approximations is related
to the order of magnitude for various direct or exchange integrals. A qualitative

discussion as to how and why this business might be justified is outlined in Section
VIL
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II. INTERACTION V(0,,P) AND
DEFINITE INTEGRALS @go(R), 200

By definition from an earlier work, according to Part one of the present research
paper, we can express the matrix element of an oxygen - bare proton interaction as
follows,

V(O,,P) = [% e .

2 I00(R) — 2 I10(R) — 2- 12,,,,.(12)] le] - q, (2.1)

where m takes on two values: —1,0r + 1. Here the definite integrals designate con-
tributions coming from the shells (1s)?,(2s)?,(2p,m = 0)?,(2p, m)?, respectively.
The latter contribution is identical for m = —1 and m = 1, so we can take into
account either one. Notice that a notation O; P...0, is identical with the notation
AP...B in Part one of the present research paper. We shall employ the radial wave
functions for the atom with Z = 8, according to Part one, while the spherical
harmonics are taken as follows,

1
Yool8,6) = =, Yia(6,6) = Vas - cosb,

Yi.wm(0,9) = —m\/szw- sinf - exp(mig). (2.2)

where here m takes on —1,0r + 1. Clearly those spherical harmonics are normalized
according to the equation,

x 2x o
/ Y, (8, 8)Yerm: (8, §)sin0d0dé = Sppbpm. (2.3)
0 0

By definition,
|'/)100(rv 01 ¢)|2

Lioo(R) =
100(R) VR? +r?2 — 2Rrcos@

dr,

dr = rldrsinfdfdé. (2.4)

The integration over ¢ runs from 0 to 27, to be performed at once leading to the
factor 27, while the integration over @ from 0 to = is performed in Section IV, by
yielding two different cases: (a) (if r < R) and (b) (if r > R). Therefore we have
to evaluate the integral

8 R exp(—16p)r2d
Imo(R)=2(a)3[2/o’ exp( RP)r r
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o0 = 2
2/ exp(—16p)r dr], - I (2.5)
R

pag

The first term in (2.5) comes from (a), whereas the second one comes from (b). In
square brackets we add and subtract the following expression,

/°° exp(—16p)ridr
R

R )

so that one can write,

Lio(R) = ;12- + 4(5—0)3 /: (;11; a0 %) - exp(—16p)r’dr, (2.6)
which can be transformed to
Loo(R) = = — ALLgo(R), (2.7a)
Algo(R) = 4 % 8 /°° (% - i) -exp(—16p)p*dp > 0. (2.7b)
R/aq pPao

In what follows we shall frequently make use of the integrals, without specifying
an integration constant,

/ezp(—/\x)dx = -—§ezp(—/\:r),

1
/xezp(—)\x)d:c = —(% + Xz) ezp(—Az),
2 . 2 !
2 == =4 2 =
/x exp(—Az)dz = (/\3 ,\2x+ 32 )ezp( Az)

6 6 3 1
/xse:rp(—/\x)dz = —(/\—4 + & + 7\;2: + PR )e:cp(—/\z),

24 24 12 1
( + —z+ -——3:2+ —z + z)exp(—/\x). (2.8)

4 - —
/z exp(—Az)dx vt 13 32 3

Using a similar method we can transform the next integral as follows,

1 i : dz
hootB) = 3 +8° [ (- apFeapt-so0 [ o )dn, (29)
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which can be written as a sum of two integrals,

R/ao _ 2 » 2
Loo(R) = % .8 / (1 - 4p)2ezp(—8p)p
0

R dp+

* (1 —4p)*ezp(—8p)p?
/ ( ) ezp(—8p)p dp]. (2.10)
R/do pao
Again, as in the previous case, we add and subtract the integral
/ * (1 —4p)*ezp(-8p)p? ds
R/ao R
to obtain 1
Izoo(R) = E — AIzoo(R), (2.110)
AlLo(R) = » +8° / N (% - i)(l — 4p)ezp(~8p)pPdp > 0. (2.11b)
2 R/as ‘R pao

III. INTEGRALS K(R,r), L(R, ), I210(R),
AND AN OXYGEN - BARE PROTON
INTERACTION IN TERMS OF
A DEFINITE INTEGRAL F(¢)

There are two more integrals to be evaluated,

! z?dz
K(R,r) = : :
5 /_1 VR 17 —2Rrz 19
1 2
(1 -z%)dz
L(R,r) = 1 &
ARr) _/_1 VR? + 1?2 —2Rrz 5)

Start from the integral, where an integration constant is not specified,

2d
./\/R’ _;21 >R = (a + bz + cz*)V/R? + r2 — 2Rrz. (3.3)
r2 —2Rrz

_ AR*4r2p2

15(Rr)® (8:40)
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i) 2(R? + r2) .
EREC e
1
—— _ﬁ. (34C)

So we can distinguish two cases: (a¢) (0 < r < R)and (b)) (R < r < 00).
By inserting the expressions for the coefficients a, b, ¢ from equations (3.4a,b,c) we
obtain,

5R? + 2r2
I{(Ra T [a]) =2 15R3 ) (35(1,)
" 5r2 + 2R?
r 2
K(R,r,[a]) + L(R,, [a]) = R’ (3.6a)
Using a similar method we arrive at,
20R? — 4r2
L(R) T, [a]) o 15R3 ’ (37(1)
20r2 — 4R?
Therefore the next integral to be evaluated is given by
b e 2
Buo(B) = 5 +8 [ [ K(Ryr,lal) - cp(~80)p%dp+
0
e, KR ) - eap(=80)p"dp). (38)

A similar definition holds for the next cited integral, independent of m, where
m=-—1,0or +1,

1 3 R/ao 5
Bim(R) = 5 +8 [/0 BB o]~ sunl~85)p dp+

/ L(R,r,[b]) - ezp(—8p)p*dp|. (3.9)
R/ag
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By using equations (3.6a,b) and (3.7a,b) we arrive at

3k 3 _2, 0
§A(R’T7 [a]) £ ZL(era [a]) R o 5R3’ (3.10(1)
—K(R r[b]) + L(R r [b]) = 3 SR— (3.100)

For practical reasons it was easier to divide the evaluation of the interaction
V(0,, P) into two parts,

V(O1,P) = Vi(Oy, P) + Vi1(O1, P), (3.11)
Vi(0y, P) = [% = 2%100(R) = 2T00(R)| el - g, (3.12)
Vgl Oy, P = [% ~ 28310(R) ~ 2I1,m(R)] el - 4. (3.13)

Having employed a huge number of transformations we were able to collect terms
with the same exponent, V;(Oy, P) on one side, while V;;(0;, P) on the other side,
in terms of a dimensionless quantity ¢,

V(Oy,P) = %F({)lel T %, (3.14a)

F(&) = (16+ ?)exp(—16§)+

3

12 2 8 2
[Z‘ +52 + 128¢ + 2566 + — + —] =P(=8) - Tog

TR (3.145)

IV. AN OXYGEN NUCLEUS O, - ELECTRON e
INTERACTION AND A DEFINITE
INTEGRAL Gg)(€)

To evaluate the matrix elements as coming from the oxygen atom (nucleus + 8
electrons) with the electron as attached to the proton, as depicted in Figure 1(a),
Part one, we must distinguish two types of contributions: those with a subscript
(0) to be associated with the ground-state contribution as coming from the nucleus
O, - electron e interaction and those with a subscript (1) to be associated with

another contribution as coming from the mutual electron i - electron e interactions.
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Having in mind Figure 1(a), Part one, we can write

V(Olvp) = 1/(0)(()116) =} 1/(1)(01,6), (41(")
o [ 19(r,6,8)
V(o)(O],C) = —Ze mdﬂ, (4.1b)
2
P(r,0,¢) = a:;Texp(_p) - Yo0(0, 4), (4.1c)
0
8
o lX(riaeh ¢i)l2
Vi1)(0s,€) = €® ;/(/ lie) dTi)'
[%(r, 6, ¢)|*dr. (4.1d)

In the above equations we used the notations as defined in Part one of this research
paper. So all the coordinates with i refer to the oxygen nucleus O; while those
coordinates without i refer to the proton P.

Therefore the oxygen nucleus O; - electron e interaction depends on the definite
integral as follows,

2
V(0)(On,€) = :—OG(o)(é), (4.2q)
1 2w 1 o<} exp(_zp)pz
= ~0¥ [ = dzdg|. :
Goy(§) = -8 [7{/0 /_1/0 T +2€p$dp qus] (4.2b)

The indicated integrations are rather straightforward. Having integrated over ¢
from 0 to 27 and over z from —1 to 1 and having used the result of various inte-

grations listed in equations (2.8) we obtain,

5 s o0
= —16|- —2p)p*d —2p)pdp| =
Go)(§) = -1 [6/0 exp(—2p)p />+2/6 ezp(—2p)pdp
8 8
(E *+ 8) -exp(—2€) — 3 (4.3)

This furnishes the calculation of the first contribution to the matrix element as
coming from an oxygen O - electron e interaction. It merely includes the oxygen

nucleus - electron interaction.
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V. ELECTRON : - ELECTRON ¢ INTERACTIONS
AND A DEFINITE INTEGRAL G(;)(€)

To perform the integrations leading to the latter definite integral, introduced in
equation (4.1d), we shall expose two different approaches, one physical, another
mathematical.

Physical approach to the electron i - electron e interaction. This problem has
been already solved in Part one, based on the following physical picture of what
is going on if one takes account of the two independent integrations, one localized
around the oxygen nucleus O;, while another around the proton P, according to
Figure 1(a), Part one. The basic idea consists of dealing with those two integrations
separately and independently one from another. In this approach we first integrate
over the coordinates of the eight electrons which belong to the nucleus Oy, as if the
z axis of the coordinate system were oriented along the O, — e direction. Next we
integrate over the coordinates of the electron, which is attached to the proton P,
whose z axis is oriented along the hydrogen bond, i. e. along the O; — P direction,
as exposed in details in Part one, Figure 1(b).

Mathematical approach to an electron i - electron e interaction. This problem we
shall outline in a general case of interest. Let the two centres of force be designated

with A and P, with various coordinates, according to Figure 1(b), Part one,

Ezample(l), r =r[Ai], ro=r[AP]=R, r;=r[Pi]; (5.1/1)

Ezample(2), r =r[Al], ry=r[Ae], 112 =r[ie]. (5.1/2)

In general, the relevant matrix element will depend on the basis elements in a
Hilbert space. Using an obvious notation to designate various quantum numbers
which specify those basis elements, we can expand the relevant matrix element in
terms of the Legendre polynomials, using a method similar to that in Part one, the
appendix A, including the textbook of Whittaker and Watson (1952). Therefore

we can write,

oo ¢

< nynglylymyma| —— 12 Ininsl Lmiml >= l+1 - Py(cosw), (5.2a)
[ ] l—-O T>

cosw = cosbcosty + sinbysinb, - cos(¢) — ¢7). (5.2b)

Here w designates an angle closed by the vectors

Fl :(rivoi)¢i); FZ =(TI,9,,¢,)
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whereas

e, >

stand for the smaller or larger among the two introduced vectors. By repeating the
arguments as exposed in Part one, the appendix A, we conclude that there are two
different types of definite integrals, each time with the only contribution coming
from the term ¢ = 0, depending on which of the two separation distances is smaller
or larger. Calling those two types (a) and (b) we can specify,

(@) ¢f wmi<y, (b)) if wm>¢.

In the case (a) we can perform the integration over the coordinates r; first, from
zero to r; = r' and then over the coordinates r’. Actually this operation is identical
to Second stage, Part one in the previous approach. The important point here is
to remember that the triangle AeP has been fixed during the outlined integration.
This is equivalent to saying that the integration runs over a set of concentric spheres
from the origin up to a maximum sphere with the radius r; = r'. In the case (b),
however, we can still perform the integration over r;, but from r; = r' to r; = 00,
while keeping the triangle AeP still fixed. This operation is identical to Second
stage, Part two in the physical approach. This is equivalent to saying that the
integration runs over a set of concentric spheres from a minimum sphere with the

radius r; = ' up to infinity.

By doing so we obtain in either case,

ri = \/1'% + rie]? — 2r'r[ie]cosd’,

r' = VR? + 12 + 2Rrcosé. (5.3)

Therefore we can write,

2
Vi1)(On,e) = Z—G(l)(f), (5.4a)
0
Gux(©) = [ Mu(po)li(r,6,9)1dr, (5.48)
p1 = V€2 + p? + 2€pcosb, (5.4¢)
dr = p?dpsin8dfds, € = aﬁ p= "[f o r(Pe] = r. (5.4d)
0 0



39

The quantity M(p1) is readily obtained as a result of the previous calculation
of the definite integral F'({) if one takes on the operations: change the sign in F(£)
and then subtract the term 8/€. Hence,

8 8
Mgy(p) = ——&(p) = —
P1 P1

2
—(16 + p—)ea:p(—lﬁpl)
1

12 3 3
— l—i 594 198 98657 + — bl -
3
ezp(—8p1) + 653" (5.5)

Integrations over ¢ from 0 to m can be performed at once, leading to a threefold

sum over the quantity M(;)(£). Without specifying an integration constant we
arrive at,

3
Gan(©) =2y [ Lezp(~20)Mory: - dp, (5.6a)
=1

My = — /(lﬁy + 2)exp(—16y)dy =
3
(15 +¥) - ezp(—16y), (5.6)

Mgy2 = —/ (12 + 52y + 128y + 256y°) exp(—8y)dy

S 3
—/ (16y2 + Z)exp(—Sy)dy —

51 27 5 ;
(35 + Fv+289" +3207) - ean(-8y)
.. (—8y) (5.6¢)
Toy <P(~8¥); .
8 3 3
M(1)3=/(;+E§)ydy=8y— E’ Yy =p1. (5.6d)

We obtain the cases specified as (a) and (b),

3
Gary(€rcaselal) = 7 [ exp(~2p)

My + My + M(l)s](case[a])PdP, (5.6¢)
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9 [oo
Gy (€, casel]) = 2 /6 ep(~2p):
M(l)l + M(1)2 - M(l);;] (case[b])pdp. (5.61)

VI. THE SUM OF Gg)(¢) + G1)(é)

Therefore the definite integrals G(g) and Gy if collected will produce the fol-
lowing contributions in terms of a dimensionless coordinate . In the former case

the integrand is given by,

[...](case[a]) = (13_6 + &+ p) emp[ ~16(€ + p)]

(55 + €~ p)ezp[ =166 p)] + [35 + 5 (€ +0)

+38(€ + p)? +32(E + p)° | exp[ - 8(¢ + p)]

-5+ 206~ p) + 286~ o) +32(6 - o))

exp[ —8(¢£ — p)] + ezp| — 8(€ + p)]

__8
16(£ + p)

exp[ — 8(¢ — p)] +8(6 +p) —

. g S
T 16(€ — p) 16(¢ + p)

—8(6—p)+ (6.1)

16(¢ — p)
To obtain the integrand in the latter case we have to perform the following

replacements,

[...](case[a]) = [...](case[b])

E+p=>p+€, E—p=>p-¢

43 + 144¢

2
Go)(§) + G)(§) = zezp(=168) 5 5 7es

¢

g[3+16§ (3+166)¢ 2 2%
§

16 %142 16+ 14 143 142




€ 3-166 (3-166)¢ 2

14 16182 16 * 18 183

§

2[ 51 27 6*28+24*32

TE 16+102 T 108 T 100 108

2/3+166 2
<16*142 ¥ 143>e$p(_16£)

+( 27 +4*28+18*32>f
2 * 102 103 104

( 28 6% 32)62 32¢3

102 T 100 102]“"(_85)

[ 516 51 —8x2T¢
=2 | = +
¢l 166 16 * 62

(51 — 8% 27€)¢ I 27 — 56¢ % (27 — 56€)¢

16+ 6 6° 62
(27 — 56€)€?  6(28 — 32€)  6(28 — 326)¢
== T ®E T @
3(28 — 326)62 (28 — 326)E3 24 %32
LA T R
24%326 12%3262 43263 3264
+ & + & + &2 + 5 ]exp(—8§)
2 51 51 (51 — 8 * 27¢)
+§[—(16*6+16*10)£+ 16 + 6
 514+8#27€ 27566 27+ 56¢
16 * 102 63 10°
L 6(28-326)  6(28+326)  24%32
64 104 65
94 % 32 1 3
BT ewp(—2€) — 4—0261‘1’(—85) "%

2 5
+g€-€l‘p(—2£) + N(€).

4]
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Here the function N(¢) is defined by two different and yet independent integrations
as follows,

N(€) = gezp(2§)[ln5 + /0 6 %(e:z:p(—lOp)-—

ezp(-2p)) dp]
+§ea:p(-—2§) [lnS - ‘/06 ,1—) (exp(—ﬁp)—

exp(2p)) dp] (6.3)

If 0 < £ < 3, then one can expand the above introduced function in terms
of { , by following one of Kasanin’s methods in an excellent textbooks on higher
mathematics, see Kasanin (1949). To secure the accuracy better than 10~ for
each term appearing in the above expansion series we had to take a large number
of terms depending on the required accuracy. Hence,

30 -
N(¢) = gezp(2{) [lns -3 (20"
n=1

n*n!

100

B Lk
30 %) 0 —6¢)
[zns + Z_:l r(T)nv - z_:l (7?737} (6.4a)

If, however, 2 < £ < 6 we developed another expansion series, with the same
accuracy 1078,

=5 -t + 5 G

Lean-sg[ L+ 3 it

106 (Lol
3 3 1 () et
+§erp(—2£)ln15 + geIP("sf)[G_ﬁ + nz=:1 W]

3
+4—e:rp(—2£)nz=: - )@= 1) (6.4b)
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It must be emphasized that those two expansion series, one given by equation
(6.4a) another by (6.4b), are identical in the overlapping interval, i. e. if 2 < £ <3,
or at least they must be close one to another. Indeed, all computer results show | up
to the accuracy of 107% already introduced for each term separately, that one can
neglect a difference appearing between N(£), equation (6.4a), and N(€), equation
(6.4b), in this particular interval.

VII. DISCUSSION AND CONCLUSIONS

The present study is a systematic approach to the problem of a mutual elec-
trostatic interaction within a many - body physical system. It represents, on one
hand, a specific historic approach from some early days of quantum theory up to
the most recently developed highly sophisticated computational methods.

For a physical background the reader is recommended to look at the following
references, Backer et al (1990), Blokhintsev (1976), Davis (1963), Dirac (1962),
Edmonds (1960), Messiah (1961), Novakovié¢ (1991, 1997), Pauling and Wilson
(1935), Reid and Ohrn (1963), Roman (1965), Schiff (1976), Shull and Lidin (1959).
A rather sophisticated mathematical background may be found in: Dirac (1962),
Mitrinovi¢ (1972), Roman (1965), Whittaker and Watson (1952).

On the other hand, the many - body problem above mentioned has a deep root
in a specific application of the Pauli exclusion principle. To see this we must
introduce some symmetric and antisymmetric combinations for a coupled physical
system which contains two nonequivalent electrons. (Electrons are identical, but
may occupy stationary states with different atomic systems; hence they might be
nonequivalent).

Assume for the sake of simplicity that one electron is described by a wave function
¥(1) in a given Hilbert space, while another nonequivalent electron is described by
another wave function x(2) in another Hilbert space. Hence, these wave functions
are elements of two different Hilbert spaces.

Now we can construct the above mentioned combinations,

$s(1,2), 4a(1,2)

as elements in a composite Hilbert space. Each element in the mentioned composite
Hilbert space will be reperesented by a direct product of the two above introduced

wave functions. We may write,
#4(1,2) = C (1) - x(2) + $(2) - x(1)] (7.1)

¢a(1,2) = D[$(1) - x(2) - $(2) - x(1)]. (7.10)
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Here C' and D are certain normalization factors to be determined by the condition,

//¢:¢,dﬁd7’2 =//¢;¢adTldTg — 1, (72)

where d7; and dr; designate some volume elements depending on the coordinate
systems employed. Our next task is to compute the relevant matrix elements of
the electron - electron interaction, e?/r12, with an obvious meaning of the used
symbols.

We obtain for the energy of the relevant stationary state,

2
B, = //¢:(1,2):—¢,(1,2)d'rld7'2, (7.3a)
12
&2
B = //¢;(1,2)r—¢a(1,2)d1'1d7'2. (7.3b)
12
Using wave functions (7.1a,b) the matrix elements (7.3a,b) can be transformed as
follows,
E, = 2C? (J £5 K), (7.4a)
E, = 2D? (J - K). (7.4b)

Here J is a direct integral, K is an exchange integral. Furthermore,

P S
T ANE2EIA T WF—82A
= / / B = Ix(2)Pdrdrs (7.50)
s= [ [ o) x@) @ x()dndn, (7.56)

H = // [1/)(1)-)((2)] E[¢(2)'X(1)]d71d72~ (7.5¢)

Generally speaking the exchange integrals can be neglected altogether. Indeed, it
is an empirical fact that the hydrogen bond has a length 2a¢ &~ 1.06 A, according to
evidence presented in Section VII, Part one. Here ay is a classical radius of the first
Bohr orbit in a hydrogen atom. What is more important, the classical radius of the
oxygen atom is estimated to be in the range (2/3)ao, which makes the separation
distance proton - oxygen nucleus something like (5/3)ao. This shows that a proton
- oxygen nucleus separation distance is a quantity considerably smaller than the
estimated hydrogen bond (2ag) above mentioned. Therefore, we can conclude,
with a high degree of confidence, that there is a small overlapping among the two
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electron wave functions, one coming from the electron associated with the proton,

another from that electron associated with a given oxygen atom. In mathematical
terms,

1

b}

2
E, = E,

G =D

>
Q

K = 0;

Q

Q
=

(7.6)

Hence the conclusions as follows.

(i) An overlap among the electron wave functions is rather weak. Hence, all over-
lapping integrals appearing in equations (7.5b,c), i. e. quantities A, K, can be
neglected in studying dynamical behaviour of the hydrogen bond.

(ii) Electrostatic interactions among the electrons, on one side, and between the
proton and the electrons associated with the oxygen atom, on the other side, may
be treated classically. In other words, the direct integrals like J in equation (7.5a)

can be treated classically according to the rules of classical electrodynamics.
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