Catacondensed Benzenoids and Phenylenes with the Extremal Third–order Randić Index

Hanyuan Deng
College of Mathematics and Computer Science,
Hunan Normal University, Changsha, Hunan 410081, P. R. China
(Received August 7, 2009)

Abstract
The third-order Randić index of a graph G is defined as
\[R_3(G) = \sum_{u_1u_2u_3u_4} \frac{1}{\sqrt{d(u_1)d(u_2)d(u_3)d(u_4)}}, \]
where the summation is taken over all possible paths of length three of G. Using the recursive formulas for computing the third-order Randić index of catacondensed benzenoids and phenylenes, we characterize the extremal catacondensed benzenoids and phenylenes with respect to the third-order Randić index, respectively.

1 Introduction

The connectivity index (or Randić index) of a graph G, denoted by $R(G)$, was introduced by Randić [1] in the study of branching properties of alkanes. It is defined as
\[R(G) = \sum_{uv} \frac{1}{\sqrt{d(u)d(v)}}, \]
where $d(u)$ denotes the degree of the vertex u and the summation is taken over all pairs of adjacent vertices of the graph G. Some publications related to the connectivity index can be found in the literature([2-18]).

In 1976, the higher-order connectivity index of a graph G was introduced in [14,15]:
\[R_k(G) = \sum_{u_1u_2\cdots u_{k+1}} \frac{1}{\sqrt{d(u_1)d(u_2)\cdots d(u_{k+1})}} \]
where the summation is taken over all possible paths of length k of G (we do not distinguish between the paths $u_1u_2\cdots u_{k+1}$ and $u_{k+1}u_{h+1}\cdots u_1$). It has been applied successfully

1Project supported by Hunan Provincial Natural Science Foundation of China (09JJ6009) and Scientific Research Fund of Hunan Provincial Education Department (09A057).
to an impressive variety of physical, chemical and biological properties which have appeared in many scientific publications and in two books ([14] and [16]). Results related to the mathematical properties of these indices have been reported in the literature([2] and [3]). Specifically, Rada [11] gave an expression of the second-order Randić index of benzenoid systems and found the minimal and maximal value over the set of catacondensed systems. The Randić index, the second-order Randić index and the third-order Randić index of phenylenes have been discussed in [4, 12-13]. Recently, the upper and lower bounds of the third-order Randić indices among all hexagonal chains and double hexagonal chains have been determined and the extremal graphs also have been characterized in [17, 18]. In this paper, we first extend the class of hexagonal chains to the class of catacondensed benzenoids, and characterize the catacondensed benzenoids with the extremal third-order Randić index, and then determine the phenylenes with the extremal third-order Randić index by using a recursive formula different from [13].

2 The recursive formulas for computing the third-order Randić indices of catacondensed benzenoids

A hexagonal system is a 2-connected plane graph whose every interior face is bounded by a regular hexagon of unit length 1. Hexagonal systems are of considerable importance in theoretical chemistry because they are the natural graph representation of benzenoid hydrocarbons. A vertex of a hexagonal system belongs to, at most, three hexagons. A vertex shared by three hexagons is called an internal vertex of the respective hexagonal system. A hexagonal system is said to be catacondensed (or tree-type) if it does not possess internal vertices, otherwise H is said to be pericondensed. The catacondensed hexagonal systems are the graph representations of an important subclass of benzenoid molecules, i.e., catacondensed benzenoids.

Let \(C_n \) denote the set of catacondensed hexagonal systems containing \(n \) hexagons. \(T \in C_n \), and \(H \) is a hexagon of \(T \). Obviously, \(H \) has at most three adjacent hexagons in \(T \). If \(H \) has exactly three adjacent hexagons in \(T \), then \(H \) is called a full-hexagon of \(T \); if \(H \) has two adjacent hexagons in \(T \), and, moreover, if its two vertices with degree two are adjacent, then \(H \) is called a turn-hexagon of \(T \); and if \(H \) has at most one adjacent hexagon in \(T \), then \(H \) is called an end-hexagon of \(T \). It is easy to see that the number of the end-hexagons of a catacondensed hexagonal system with \(n \geq 2 \) hexagons is two more
than the number of its full-hexagons.

A hexagonal chain is a catacondensed hexagonal system without full-hexagons. We denote by L_n and Z_n the linear hexagonal chain and the zigzag hexagonal chain with n hexagons, respectively, see Figure 1.

Let T be a hexagonal chain with n hexagons H_1, H_2, \ldots, H_n, where H_i and H_{i+1} have a common edge for each $i = 1, 2, \ldots, n - 1$. We denote this hexagonal chain by $T = H_1H_2\cdots H_n$. A hexagonal chain with at least two hexagons has two end-hexagons. Let $T \in C_n$, if T is a hexagonal chain, then T is the unique branch of itself; otherwise, let $B = H_1H_2\cdots H_k$, $k \geq 2$, be a hexagonal chain of T, where the end-hexagon H_1 of B is also an end-hexagon of T, the other end-hexagon H_k of B is a full-hexagon of T, and H_i is not a full-hexagon of T for $2 \leq i \leq k - 1$, then B is called a branch of T.

For example, $B = H_1H_2H_3H_4H_5$ is a branch of the catacondensed hexagonal system illustrated in Figure 1.

If T is not a hexagonal chain, then the number of branches of T is equal to the number of end-hexagons of T.

In the following, we discuss the recursive formula for computing the third-order Randić index of a catacondensed hexagonal system.

Let $T_n \in C_n$ be a catacondensed hexagonal system with n hexagons. $B = H_1H_2\cdots H_k$ ($k \geq 2$) is a branch of T_n, where $H_1 = uvabcd$ is an end-hexagon of T_n, uv is the common edge of H_1 and H_2. Then $T_{n-1} = T_n - \{a, b, c, d\}$ is a catacondensed hexagonal system with $n - 1$ hexagons.
If \(l = v_1v_2v_3v_4 \) is a path of \(T_n \), then \(W_{T_n}(l) = \frac{1}{\sqrt{d(v_1)d(v_2)d(v_3)d(v_4)}} \) is the weight of the path \(l \) in \(T_n \). And \(Q = W_{T_n}(l) - W_{T_{n-1}}(l) \) for a common path \(l \) of \(T_n \) and \(T_{n-1} \).

Case I. \(H_2 \) is neither a turn-hexagon nor a full-hexagon, see Figure 2(1).

From \(T_{n-1} \) to \(T_n \), the new added paths of length 3 must contain one of \(a, b, c, d \), they are given in Table 1 and the sum of their weights is \(\frac{2}{\sqrt{6}} + \frac{17}{12} \).

Table 1. The new added paths of length 3 in \(T_n \) and their weights.

<table>
<thead>
<tr>
<th>path</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(avv_1v_2)</td>
<td>(\frac{5}{6})</td>
</tr>
<tr>
<td>(avv_1u_1)</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(duu_1v_2)</td>
<td>(\frac{5}{6})</td>
</tr>
<tr>
<td>(duv_1v_2)</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(bavv_1)</td>
<td>(\frac{1}{2\sqrt{6}})</td>
</tr>
<tr>
<td>(cdvv_1)</td>
<td>(\frac{1}{2\sqrt{6}})</td>
</tr>
<tr>
<td>(abcd)</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>(avud)</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(bedu)</td>
<td>(\frac{1}{2\sqrt{6}})</td>
</tr>
<tr>
<td>(bavu)</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(cdv)</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(cbav)</td>
<td>(\frac{1}{2\sqrt{6}})</td>
</tr>
</tbody>
</table>

Note that the paths of length 3 in \(T_{n-1} \) whose weights are changed must contain \(u \) or \(v \). They are given in Table 2, and

\[
\sum_{i=1}^{7} Q_i = \frac{1}{3\sqrt{6}} - \frac{5}{12} + \left(\frac{1}{3\sqrt{2}} - \frac{1}{2\sqrt{3}} \right) \left(\frac{1}{\sqrt{d(u_3)}} + \frac{1}{\sqrt{d(v_3)}} \right)
\]

Table 2. The paths of length 3 in \(T_{n-1} \) whose weights are changed.

<table>
<thead>
<tr>
<th>path</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(uu_1u_2u_3)</td>
<td>(\frac{1}{\sqrt{d(u_3)}} \left(\frac{1}{3\sqrt{2}} - \frac{1}{2\sqrt{3}} \right))</td>
</tr>
<tr>
<td>(uu_1u_2v_2)</td>
<td>(\frac{1}{3\sqrt{6}} - \frac{1}{6})</td>
</tr>
<tr>
<td>(uvv_1v_2)</td>
<td>(\frac{1}{3\sqrt{6}} - \frac{1}{2\sqrt{6}})</td>
</tr>
<tr>
<td>(vv_1v_2v_3)</td>
<td>(\frac{1}{6} - \frac{1}{6})</td>
</tr>
</tbody>
</table>

So, \(R_3(T_n) - R_3(T_{n-1}) = \left(\frac{2}{\sqrt{6}} + \frac{17}{12} \right) + \left(\frac{1}{3\sqrt{6}} - \frac{5}{12} + \left(\frac{1}{3\sqrt{2}} - \frac{1}{2\sqrt{3}} \right) \left(\frac{1}{\sqrt{d(u_3)}} + \frac{1}{\sqrt{d(v_3)}} \right) \right) \).

Since \(2 \leq d(u_3) \leq 3, 2 \leq d(v_3) \leq 3, \)

\[
\frac{2}{9} \sqrt{6} + \frac{4}{3} \leq R_3(T_n) - R_3(T_{n-1}) \leq \frac{1}{2} \sqrt{6} + \frac{2}{3}
\]

(1)

Case II. \(H_2 \) is a turn-hexagon.

Subcase I. \(H_3 \) is neither a turn-hexagon nor a full-hexagon, see Figure 2(2). Then, from \(T_{n-1} \) to \(T_n \), the new added paths of length 3 are given in Table 3. The sum of their weights is \(\frac{4}{9} \sqrt{6} + \frac{5}{4} \).

Table 3.

<table>
<thead>
<tr>
<th>path</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(avv_1v_2)</td>
<td>(\frac{5}{6})</td>
</tr>
<tr>
<td>(avv_1u_4)</td>
<td>(\frac{3}{\sqrt{6}})</td>
</tr>
<tr>
<td>(avv_1u_1)</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(duu_1u_2)</td>
<td>(\frac{5}{6})</td>
</tr>
<tr>
<td>(duv_1v_2)</td>
<td>(\frac{1}{2\sqrt{6}})</td>
</tr>
<tr>
<td>(bavv_1)</td>
<td>(\frac{1}{2\sqrt{6}})</td>
</tr>
<tr>
<td>(cdvv_1)</td>
<td>(\frac{1}{2\sqrt{6}})</td>
</tr>
<tr>
<td>(abcd)</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>(avud)</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(bedu)</td>
<td>(\frac{1}{2\sqrt{6}})</td>
</tr>
<tr>
<td>(bavu)</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(cdv)</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(cbav)</td>
<td>(\frac{1}{2\sqrt{6}})</td>
</tr>
</tbody>
</table>
There are eight paths of length 3 in T_{n-1} whose weights are changed. They are given in Table 4, and

$$\sum_{i=1}^{8} Q_i \frac{1}{6\sqrt{6}} - \frac{17}{36} = \frac{1}{36\sqrt{6}} - \frac{17}{36}.$$

Table 4.

<table>
<thead>
<tr>
<th>P_i</th>
<th>$uvu_1u_2u_3$</th>
<th>uvu_1u_3</th>
<th>uvu_1v_2</th>
<th>$uvu_1v_2v_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_i</td>
<td>$\frac{1}{6} - \frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{6} - \frac{1}{6}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{6} - \frac{1}{6}$</td>
</tr>
<tr>
<td>P_i</td>
<td>$vvu_1u_4u_1$</td>
<td>$vvu_1u_3u_2$</td>
<td>$vvu_1v_2u_1$</td>
<td>u_1uvu_1</td>
</tr>
<tr>
<td>Q_i</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
<td>$\frac{1}{6} - \frac{1}{4}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{2\sqrt{6}}$</td>
</tr>
</tbody>
</table>

And,

$$R_3(T_n) - R_3(T_{n-1}) = \left(\frac{4}{9} \sqrt{6} + \frac{5}{4} \right) + \left(\frac{1}{36} \sqrt{6} - \frac{17}{36} \right) = \frac{17}{36} \sqrt{6} + \frac{7}{9}$$ \hspace{1cm} (2)

Remark. If $R_3(T_n) - R_3(T_{n-1}) = \frac{17}{36} \sqrt{6} + \frac{7}{9}$, then, since H_3 is neither a turn-hexagon nor a full-hexagon in T_n and by the equation (1), it must have $R_3(T_{n-1}) - R_3(T_{n-2}) = \frac{2}{9} \sqrt{6} + \frac{4}{3}$, where $T_{n-2} = T_{n-1} - \{v, u, u_1, u_2\} = T_n - \{a, b, c, d, v, u, u_1, u_2\}$.

Subcase II. H_3 is a turn-hexagon.

(i) If $d(u_4) = 3$, see Figure 2(3), then $d(v_2) = d(v_3) = 2$ since H_3 is not a full-hexagon. From T_{n-1} to T_n, the new added paths of length 3 and their weights are the same as in Table 3. Also, there are eight paths of length 3 in T_{n-1} whose weights are changed. They are given in Table 5, and

$$\sum_{i=1}^{8} Q_i = -\frac{4}{3\sqrt{6}} + \frac{5}{36} = -\frac{2}{9} \sqrt{6} + \frac{5}{36}$$

Table 5.

<table>
<thead>
<tr>
<th>P_i</th>
<th>$uvu_1u_2u_3$</th>
<th>uvu_1u_3</th>
<th>uvu_1v_2</th>
<th>$uvu_1v_2v_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_i</td>
<td>$\frac{1}{6} - \frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{6} - \frac{1}{6}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{6} - \frac{1}{6}$</td>
</tr>
<tr>
<td>P_i</td>
<td>$vvu_1u_4u_1$</td>
<td>$vvu_1u_3u_2$</td>
<td>$vvu_1v_2u_1$</td>
<td>u_1uvu_1</td>
</tr>
<tr>
<td>Q_i</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
<td>$\frac{1}{6} - \frac{1}{4}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{2\sqrt{6}}$</td>
</tr>
</tbody>
</table>

So,

$$R_3(T_n) - R_3(T_{n-1}) = \left(\frac{4}{9} \sqrt{6} + \frac{5}{4} \right) + \left(-\frac{2}{9} \sqrt{6} + \frac{5}{36} \right) = \frac{2}{9} \sqrt{6} + \frac{25}{18}$$ \hspace{1cm} (3)

(ii) If $d(u_4) = 2$, see Figure 2(4), then $d(v_2) = d(v_3) = 3$ since H_3 is a turn-hexagon. From T_{n-1} to T_n, the new added paths of length 3 are given in Table 6. The sum of their weights is $\frac{1}{2} \sqrt{6} + \frac{13}{12}$.
Also, there are nine paths of length 3 in T_{n-1} whose weights are changed. They are given in Table 7, and

$$\sum_{i=1}^{9} Q_i = -\frac{1}{3\sqrt{6}} - \frac{1}{4} + \frac{1}{d(v_4)} \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}} \right)$$

Table 7.

<table>
<thead>
<tr>
<th>P_i</th>
<th>$uu_1u_2u_3$</th>
<th>$u_1v_1u_3$</th>
<th>$u_1v_1v_2$</th>
<th>$v_1v_2v_4$</th>
<th>$v_1v_2v_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_i</td>
<td>$\frac{1}{5} - \frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{d(v_4)} \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}} \right)$</td>
<td>$\frac{1}{9} - \frac{1}{3\sqrt{6}}$</td>
</tr>
</tbody>
</table>

So, $R_3(T_n) - R_3(T_{n-1}) = \left(\frac{1}{2} \sqrt{6} + \frac{13}{12} \right) + \left(-\frac{1}{3\sqrt{6}} - \frac{1}{4} + \frac{1}{d(v_4)} \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}} \right) \right)$.

Since $2 \leq d(v_4) \leq 3$, we have

$$\frac{1}{2} \sqrt{6} + \frac{2}{3} \leq R_3(T_n) - R_3(T_{n-1}) \leq \frac{7}{18} \sqrt{6} + \frac{17}{18} \quad (4)$$

Subcase III. H_3 is a full-hexagon, see Figure 2(5). Then $k = 3$.

From T_{n-1} to T_n, the new added paths of length 3 and their weights are the same as in Table 6. Also, there are nine paths of length 3 in T_{n-1} whose weights are changed. They are given in Table 8, and

$$\sum_{i=1}^{9} Q_i = -\frac{1}{\sqrt{6}} + \frac{1}{36} + \frac{1}{d(v_4)} \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}} \right)$$

Table 8.

<table>
<thead>
<tr>
<th>P_i</th>
<th>$uu_1u_2u_3$</th>
<th>$u_1v_1u_3$</th>
<th>$u_1v_1v_2$</th>
<th>$v_1v_2v_4$</th>
<th>$v_1v_2v_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_i</td>
<td>$\frac{1}{5} - \frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{d(v_4)} \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}} \right)$</td>
<td>$\frac{1}{9} - \frac{1}{3\sqrt{6}}$</td>
</tr>
</tbody>
</table>

So, $R_3(T_n) - R_3(T_{n-1}) = \left(\frac{1}{2} \sqrt{6} + \frac{13}{12} \right) + \left(-\frac{1}{\sqrt{6}} + \frac{1}{36} + \frac{1}{d(v_4)} \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}} \right) \right)$.

Since $2 \leq v_4 \leq 3$, we have

$$\frac{7}{18} \sqrt{6} + \frac{17}{18} \leq R_3(T_n) - R_3(T_{n-1}) \leq \frac{5}{18} \sqrt{6} + \frac{11}{9} \quad (5)$$
Case III. H_2 is a full-hexagon. Then $k = 2$.

Subcase I. $d(u_3) = d(v_3) = 2$, see Figure 2(6). Then $(d(u_4), d(u_5)) \neq (3, 3)$ and $(d(v_4), d(v_5)) \neq (3, 3)$.

From T_{n-1} to T_n, the new added paths of length 3 are given in Table 9 and the sum of their weights is $\frac{7}{18} \sqrt{6} + \frac{17}{12}$.

<table>
<thead>
<tr>
<th>avv_v3</th>
<th>avv_v2</th>
<th>avuu</th>
<th>duu_u3</th>
<th>duu_u2</th>
<th>duv_v1</th>
<th>bavv_v1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Also, there are eleven paths of length 3 in T_{n-1} whose weights are changed. They are given in Table 10, and

$$
\sum_{i=1}^{11} Q_i = f(u_4, u_5; v_4, v_5)
$$

$$
= \left(-\frac{1}{6} \sqrt{6} + \frac{1}{18} \right) - \left(\frac{1}{2\sqrt{3}} - \frac{1}{3\sqrt{2}} \right) \left(\frac{1}{\sqrt{d(u_5)}} + \frac{1}{\sqrt{d(v_5)}} \right)
$$

$$
- \left(\frac{1}{3\sqrt{2}} - \frac{1}{3\sqrt{3}} \right) \left(\frac{1}{\sqrt{d(u_4)}} + \frac{1}{\sqrt{d(v_4)}} \right).
$$

Table 10.

<table>
<thead>
<tr>
<th>$u_1 u_3 u_5$</th>
<th>$u_1 u_2 u_4$</th>
<th>$u_1 u_2 v_2$</th>
<th>$u_2 v_1 v_3$</th>
<th>$u_2 v_1 v_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 / \sqrt{d(u_3)} (1 / 3\sqrt{3} - 1 / 2\sqrt{3})$</td>
<td>$1 / \sqrt{d(u_1)} (1 / 3\sqrt{3} - 1 / 3\sqrt{2})$</td>
<td>$1 / 3\sqrt{6} - 1 / 6$</td>
<td>$1 / 3\sqrt{6} - 1 / 6$</td>
<td>$1 / 3\sqrt{6} - 1 / 6$</td>
</tr>
<tr>
<td>P_1</td>
<td>$v_1 v_2 v_3$</td>
<td>$v_1 v_2 v_3$</td>
<td>$v_1 v_2 v_3$</td>
<td>$v_1 v_2 v_3$</td>
</tr>
<tr>
<td>Q_1</td>
<td>$1 / \sqrt{d(v_3)} (1 / 3\sqrt{3} - 1 / 2\sqrt{3})$</td>
<td>$1 / \sqrt{d(v_1)} (1 / 3\sqrt{3} - 1 / 3\sqrt{2})$</td>
<td>$1 / 3\sqrt{6} - 1 / 6$</td>
<td>$1 / 3\sqrt{6} - 1 / 6$</td>
</tr>
<tr>
<td>P_1</td>
<td>$u_1 u_2 v_1$</td>
<td>$u_1 u_2 v_1$</td>
<td>$u_1 u_2 v_1$</td>
<td>$u_1 u_2 v_1$</td>
</tr>
<tr>
<td>Q_1</td>
<td>$1 / 3\sqrt{6} - 1 / 6$</td>
</tr>
</tbody>
</table>

Since $\frac{1}{2\sqrt{3}} - \frac{1}{3\sqrt{2}} > \frac{1}{3\sqrt{3}} > 0$, $(d(u_4), d(u_5)) \neq (3, 3)$ and $(d(v_4), d(v_5)) \neq (3, 3)$,

$$
\frac{-2}{9} \sqrt{6} + \frac{1}{18} = f(2, 2; 2, 2) \leq f(u_4, u_5; v_4, v_5) \leq f(2, 3; 2, 3) = \frac{1}{18} \sqrt{6} - \frac{11}{18}
$$

So, $R_3(T_n) - R_3(T_{n-1}) = \left(\frac{7}{18} \sqrt{6} + \frac{17}{12} \right) + f(u_4, u_5; v_4, v_5)$, and

$$
\frac{1}{6} \sqrt{6} + \frac{53}{36} \leq R_3(T_n) - R_3(T_{n-1}) \leq \frac{4}{9} \sqrt{6} + \frac{29}{36}
$$

(6)

Subcase II. $d(u_3) = 3, d(v_3) = 2$, see Figure 2(7). Then $(d(v_4), d(v_5)) \neq (3, 3)$.

From T_{n-1} to T_n, the new added paths of length 3 are given in Table 11 and the sum of their weights is $\frac{5}{18} \sqrt{6} + \frac{1}{2}$.

Table 11.

<table>
<thead>
<tr>
<th>avv_1v_3</th>
<th>avv_1v_2</th>
<th>$avuu_1$</th>
<th>duu_1u_3</th>
<th>duu_1u_2</th>
<th>$duvv_1$</th>
<th>$bavv_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{6}$</td>
</tr>
</tbody>
</table>

cdvu

| $\frac{1}{6}$ | $\frac{1}{3}$ | $\frac{1}{6}$ | $\frac{1}{2\sqrt{6}}$ | $\frac{1}{5}$ | $\frac{1}{6}$ | $\frac{1}{2\sqrt{6}}$ |

\[\text{Figure 2.} \]
Also, there are twelve paths of length 3 in T_{n-1} whose weights are changed. They are given in Table 12, and

$$
\sum_{i=1}^{12} Q_i = f(u_4, u_6; v_4, v_5)
= \left(-\frac{7}{36} \sqrt{6} + \frac{1}{9} \right) - \left(\frac{1}{2\sqrt{3}} - \frac{1}{3\sqrt{2}} \right) \frac{1}{\sqrt{d(v_5)}}
- \left(\frac{1}{3\sqrt{2}} - \frac{1}{3\sqrt{3}} \right) \left(\frac{1}{\sqrt{d(u_4)}} + \frac{1}{\sqrt{d(u_6)}} + \frac{1}{\sqrt{d(v_4)}} \right).
$$

<table>
<thead>
<tr>
<th>P_i</th>
<th>$uu_1u_3u_6$</th>
<th>$uu_1u_3u_5$</th>
<th>$uu_1u_2u_4$</th>
<th>$uu_1u_2v_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_i</td>
<td>$\frac{1}{\sqrt{d(u_6)}} \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}} \right)$</td>
<td>$\frac{1}{9} - \frac{1}{3\sqrt{3}}$</td>
<td>$\frac{1}{\sqrt{d(u_4)}} \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}} \right)$</td>
<td>$\frac{1}{9} - \frac{1}{3\sqrt{3}}$</td>
</tr>
</tbody>
</table>

Since $\frac{1}{2\sqrt{3}} - \frac{1}{3\sqrt{2}} > \frac{1}{3\sqrt{2}} - \frac{1}{3\sqrt{3}} > 0$, and $(d(v_4), d(v_5)) \neq (3, 3)$,

$$
-\frac{1}{9} \sqrt{6} - \frac{2}{9} = f(2, 2; 2, 2) \leq f(u_4, u_6; v_4, v_5) \leq f(3, 3; 2, 3) = -\frac{7}{36} \sqrt{6}
$$

So, $R_3(T_n) - R_3(T_{n-1}) = (\frac{4}{9} \sqrt{6} + \frac{5}{2}) + f(u_4, u_6; v_4, v_5)$, and

$$
\frac{1}{3} \sqrt{6} + \frac{37}{36} \leq R_3(T_n) - R_3(T_{n-1}) \leq \frac{1}{4} \sqrt{6} + \frac{5}{4}
$$

(7)

Subcase III. $d(u_3) = 2, d(v_3) = 3$, see Figure 2(8). Then it is symmetric to Subcase II.

Subcase IV. $d(u_3) = d(v_3) = 3$, see Figure 2(9). Then, from T_{n-1} to T_n, the new added paths of length 3 are given in Table 13 and the sum of their weights is $\frac{1}{2} \sqrt{6} + \frac{13}{11}$.

<table>
<thead>
<tr>
<th>avv_1v_3</th>
<th>avv_1v_2</th>
<th>avu_1u_3</th>
<th>duu_1u_3</th>
<th>duu_1u_2</th>
<th>$duvv_1$</th>
<th>$bavv_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{3\sqrt{3}}$</td>
<td>$\frac{1}{3\sqrt{3}}$</td>
<td>$\frac{1}{3\sqrt{3}}$</td>
<td>$\frac{1}{3\sqrt{3}}$</td>
<td>$\frac{1}{3\sqrt{3}}$</td>
<td>$\frac{1}{3\sqrt{3}}$</td>
<td>$\frac{1}{3\sqrt{3}}$</td>
</tr>
<tr>
<td>$\frac{1}{3\sqrt{2}}$</td>
<td>$\frac{1}{3\sqrt{2}}$</td>
<td>$\frac{1}{3\sqrt{2}}$</td>
<td>$\frac{1}{3\sqrt{2}}$</td>
<td>$\frac{1}{3\sqrt{2}}$</td>
<td>$\frac{1}{3\sqrt{2}}$</td>
<td>$\frac{1}{3\sqrt{2}}$</td>
</tr>
<tr>
<td>$\frac{1}{\sqrt{6}}$</td>
<td>$\frac{1}{\sqrt{6}}$</td>
<td>$\frac{1}{\sqrt{6}}$</td>
<td>$\frac{1}{\sqrt{6}}$</td>
<td>$\frac{1}{\sqrt{6}}$</td>
<td>$\frac{1}{\sqrt{6}}$</td>
<td>$\frac{1}{\sqrt{6}}$</td>
</tr>
</tbody>
</table>

Also, there are thirteen paths of length 3 in T_{n-1} whose weights are changed. They are given in Table 14, and
$$\sum_{i=1}^{13} Q_i = f(u_4, u_6; v_4, v_6)$$
\[
= \left(\frac{-2}{9} \sqrt{6} + \frac{1}{6} \right) + \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}} \right) \left(\frac{1}{\sqrt{d(u_4)}} + \frac{1}{\sqrt{d(u_6)}} + \frac{1}{\sqrt{d(v_4)}} + \frac{1}{\sqrt{d(v_6)}} \right).
\]

Table 14.

<table>
<thead>
<tr>
<th>P_i</th>
<th>$uu_1u_3u_6$</th>
<th>$uu_1u_3u_5$</th>
<th>$uu_1u_2u_4$</th>
<th>$uu_1u_2u_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_i</td>
<td>$\frac{1}{d(u_6)} \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}} \right)$</td>
<td>$\frac{1}{9} - \frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{9} - \frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{9} - \frac{1}{3\sqrt{6}}$</td>
</tr>
<tr>
<td>P_i</td>
<td>uuv_1v_2</td>
<td>uuv_1v_3</td>
<td>$uuv_1v_3v_6$</td>
<td>$vuv_1v_3v_5$</td>
</tr>
<tr>
<td>Q_i</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
</tr>
<tr>
<td>P_i</td>
<td>$vuv_1v_3v_4$</td>
<td>$vuv_1v_3v_2u_2$</td>
<td>$vuv_1u_2v_2$</td>
<td>$vuv_1u_2v_2$</td>
</tr>
<tr>
<td>Q_i</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
</tr>
</tbody>
</table>

Since $-\frac{1}{2} = f(2, 2; 2, 2) \leq f(u_4, u_6; v_4, v_6) \leq f(3, 3; 3, 3) = -\frac{4}{9} \sqrt{6} + \frac{11}{18}$, and $R_3(T_n) - R_3(T_{n-1}) = \left(\frac{1}{2} \sqrt{6} + \frac{13}{12} \right) + f(u_4, u_6; v_4, v_6)$, we have
\[
\frac{1}{2} \sqrt{6} + \frac{7}{12} \leq R_3(T_n) - R_3(T_{n-1}) \leq \frac{1}{18} \sqrt{6} + \frac{61}{36} \quad (8)
\]

3 Catacondensed benzenoids chains with the extremal third-order Randić index

In this section, we will give the maximum and minimum third-order Randić indices of catacondensed hexagonal systems and characterize the extremal graphs.

When $n = 1, 2, 3, 4$, the third-order Randić indices of catacondensed hexagonal systems with n hexagons are shown in Figure 3.

Theorem 1. Let $T_n \in C_n$ be a catacondensed hexagonal system with n hexagons. Then
\[
R_3(T_n) \leq R_3(Z_n)
\]
with equality if and only if $T_n = Z_n$ is the zigzag hexagonal chain with n hexagons.

Proof. The result is true for $n = 1, 2, 3, 4$, see Figure 3.

We suppose that the result is true for $n - 2$ and $n - 1$ ($n \geq 5$).
By the equations (1)-(8) and max \(\frac{1}{3}\sqrt{6} + \frac{5}{18}\sqrt{6} + \frac{29}{36}\), \(\frac{1}{12}\sqrt{6} + \frac{61}{36}\) \(<\frac{2}{5}\sqrt{6} + \frac{25}{18}\), we have

\[R_3(T_n) - R_3(T_{n-1}) \leq \frac{2}{9}\sqrt{6} + \frac{25}{18}\] or \(R_3(T_n) - R_3(T_{n-1}) \leq \frac{17}{36}\sqrt{6} + \frac{7}{9}\).

From the remark in Case II, if \(R_3(T_n) - R_3(T_{n-1}) = \frac{17}{36}\sqrt{6} + \frac{7}{9}\), then it must have \(R_3(T_{n-1}) - R_3(T_{n-2}) = \frac{2}{9}\sqrt{6} + \frac{4}{3}\), and

\[R_3(T_n) - R_3(T_{n-2}) = \left(\frac{2}{9}\sqrt{6} + \frac{4}{3}\right) + \left(\frac{17}{36}\sqrt{6} + \frac{7}{9}\right) < 2\left(\frac{2}{9}\sqrt{6} + \frac{25}{18}\right)\]

So, \(R_3(T_n) - R_3(T_{n-2}) \leq 2\left(\frac{2}{9}\sqrt{6} + \frac{25}{18}\right)\). By the inductive hypothesis and the equation (3), we have

\[R_3(T_n) \leq R_3(Z_n)\]

with equality if and only if \(T_n = Z_n\).

\[R_3 = \frac{3}{2}\]

\[R_3 = \frac{2}{3}\sqrt{6} + \frac{11}{6}\]

\[R_3 = \frac{8}{9}\sqrt{6} + \frac{19}{6}\]

\[R_3 = \frac{10}{9}\sqrt{6} + \frac{9}{2}\]

\[R_3 = \frac{49}{36}\sqrt{6} + \frac{71}{18}\]

\[R_3 = \sqrt{6} + \frac{53}{18}\]

\[R_3 = \frac{11}{9}\sqrt{6} + \frac{13}{3}\]

\[R_3 = \frac{3}{2}\sqrt{6} + \frac{65}{18}\]

\[R_3 = \frac{7}{6}\sqrt{6} + \frac{53}{12}\]

Figure 3.

Similarly, because

\[\min\left\{\frac{2}{9}\sqrt{6} + \frac{4}{3}\cdot\frac{1}{2}\sqrt{6} + \frac{2}{3}\cdot\frac{7}{18}\sqrt{6} + \frac{17}{18} \cdot \frac{1}{6}\sqrt{6} + \frac{53}{36} \cdot \frac{1}{3}\sqrt{6} + \frac{37}{36} \cdot \frac{1}{2}\sqrt{6} + \frac{7}{12}\right\} = \frac{2}{9}\sqrt{6} + \frac{4}{3}\]

by the equations (1)-(8) and the induction on \(n\), we can get
Theorem 2. Let \(T_n \in C_n \) be a catacondensed hexagonal system with \(n \) hexagons. Then
\[
R_3(T_n) \geq R_3(L_n)
\]
with equality if and only if \(T_n = L_n \) is the linear hexagonal chain with \(n \) hexagons.

Theorems 1 and 2 show that the graphs with the maximum and minimum third-order Randić indices in \(C_n \) are \(Z_n \) and \(L_n \), respectively. They are the same as in the hexagonal chains\([17]\), and for \(n \geq 3 \)
\[
R_3(Z_n) = \frac{2n + 3}{9} \sqrt{6} + \frac{25n - 22}{18}, \quad R_3(L_n) = \frac{2n + 2}{9} \sqrt{6} + \frac{8n - 5}{6}.
\]

4 The recursive formulas for computing the third-order Randić indices of phenylenes

Phenylenes are a class of chemical compounds in which the carbon atoms form 6- and 4-membered cycles. Each 4-membered cycle(square) is adjacent to two disjoint 6-membered cycles(hexagons), and no two hexagons are adjacent. Their respective molecular graphs are also referred to as phenylenes.

By eliminating, “squeezing out”, the squares from a phenylene, a catacondensed hexagonal system (which may be jammed) is obtained, called the hexagonal squeeze of the respective phenylene. Clearly, there is a one-to-one correspondence between a phenylene (P) and its hexagonal squeeze (S). Both possess the same number of hexagons. In addition, a phenylene with \(n \) hexagons possesses \(n - 1 \) squares. An example of a phenylene and its hexagonal squeeze is shown in Figure 4.

Figure 4. A phenylene and its hexagonal squeeze.
Let P_n be a phenylene with n hexagons. S_n is its hexagonal squeeze. H is a hexagon of P_n. Obviously, H has at most three adjacent hexagons in S_n. If H has exactly three adjacent hexagons in S_n, then H is called a full-hexagon of S_n and P_n; if H has at most one adjacent hexagon in S_n, then H is called an end-hexagon of S_n and P_n. It is easy to see that the number of the end-hexagons is more two than the number of its full-hexagons.

For the third-order Randić index of phenylenes, a formula was given in [13] by using its inlets.

Lemma ([13]). Let P_n be a phenylene with n hexagons. Then

$$R_3(P_n) = \frac{109 + 2\sqrt{6}}{36} h + \frac{14\sqrt{6} - 31}{36} r + \frac{5 - 2\sqrt{6}}{18} f - \frac{27 - 10\sqrt{6}}{72} a - \frac{35 - 2\sqrt{6}}{18}$$

where r, f and a are the numbers of inlets, fissures and pairs of adjacent inlets in P_n, respectively.

In the following, we discuss the recursive formula for computing the third-order Randić index of phenylenes.

Let P_n be a phenylene with n hexagons. $H_1 = x_1x_2x_3x_4x_5x_6x_1$ is an end-hexagon of P_n. H_2 is the hexagon adjacent to H_1 in the hexagonal squeeze S_n of P_n. $P_{n-1} = P_n - \{x_1, x_2, x_3, x_4, x_5, x_6\}$ is a phenylene with $n - 1$ hexagons.

As in Section 2, if $l = v_1v_2v_3v_4$ is a path of P_n, then

$$W_{P_n}(l) = \frac{1}{\sqrt{d(v_1)d(v_2)d(v_3)d(v_4)}}$$

is the weight of the path l in P_n. And $Q = W_{P_n}(l) - W_{P_{n-1}}(l)$ for a common path l of P_n and P_{n-1}.

Case I. H_2 is neither a turn-hexagon nor a full-hexagon, see Figure 5(1).

From P_{n-1} to P_n, the new added paths of length 3 must contain one of x_1, \ldots, x_6, they are given in Table 15 and the sum of their weights is $\frac{13}{3\sqrt{6}} + \frac{67}{36}$.
(1) \(R_3(P_n) - R_3(P_{n-1}) = \frac{8}{9} \sqrt{6} + \frac{10}{9} \)

(2) \(R_3(P_n) - R_3(P_{n-1}) = \frac{4}{9} \sqrt{6} + \frac{39}{18} \)

(3) \(R_3(P_n) - R_3(P_{n-1}) = \frac{1}{3} \sqrt{6} + \frac{22}{9} \)

(4) \(R_3(P_n) - R_3(P_{n-1}) = \frac{4}{9} \sqrt{6} + \frac{39}{18} \)

(5) \(R_3(P_n) - R_3(P_{n-1}) = \frac{1}{3} \sqrt{6} + \frac{22}{9} \)

(6) (i) \(d(u_5) = d(v_5) = 3, \)
\(R_3(P_n) - R_3(P_{n-1}) = \frac{1}{18} \sqrt{6} + \frac{109}{36} \)
(ii) \(d(u_5) = 3, d(v_5) = 2 \)
\(\text{or } d(u_5) = 2, d(v_5) = 3, \)
\(R_3(P_n) - R_3(P_{n-1}) = \frac{1}{18} \sqrt{6} + \frac{11}{4} \)
(iii) \(d(u_5) = d(v_5) = 2, \)
\(R_3(P_n) - R_3(P_{n-1}) = \frac{5}{18} \sqrt{6} + \frac{89}{36} \)

Figure 5.
Table 15. The new added paths of length 3 in P_n and their weights.

<table>
<thead>
<tr>
<th>Path</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1x_2x_3x_4$</td>
<td>$\frac{1}{\sqrt{6}}$</td>
</tr>
<tr>
<td>$x_1x_2x_4x_1$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$x_1x_3x_4x_1$</td>
<td>$\frac{1}{\sqrt{6}}$</td>
</tr>
<tr>
<td>$x_1x_4x_1x_2$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$x_2x_3x_4x_1$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$x_3x_4x_1x_2$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Note that the paths of length 3 in P_{n-1} whose weights are changed must contain u or v. They are given in Table 16, and

$$\sum_{i=1}^{7} Q_i = \frac{1}{\sqrt{6}} - \frac{3}{4}$$

Table 16. The paths of length 3 in P_{n-1} whose weights are changed.

<table>
<thead>
<tr>
<th>Path</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1u u_1 u_2 u_3$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
</tr>
<tr>
<td>$u u_1 u_2 v_2$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
</tr>
<tr>
<td>$u v v_1 v_2$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
</tr>
<tr>
<td>$v v_1 v_2 v_3$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
</tr>
<tr>
<td>$v v_1 v_2 u_2$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
</tr>
<tr>
<td>$u_1 u v v_1$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
</tr>
</tbody>
</table>

So,

$$R_3(P_n) - R_3(P_{n-1}) = \left(\frac{13}{3\sqrt{6}} + \frac{67}{36} \right) + \left(\frac{1}{\sqrt{6}} - \frac{3}{4} \right) = \frac{8}{9} \sqrt{6} + \frac{10}{9} \quad (9)$$

Case II. H_2 is a turn-hexagon. Let H_3 be the hexagon adjacent to H_2 in S_n and different from H_1.

Subcase I. H_3 is neither a turn-hexagon nor a full-hexagon, see Figure 5(2). Then, from P_{n-1} to P_n, the new added paths of length 3 are given in Table 17. The sum of their weights is $\frac{5}{9} \sqrt{6} + \frac{83}{36}$.

Table 17.

<table>
<thead>
<tr>
<th>Path</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1x_2x_3x_4$</td>
<td>$\frac{1}{\sqrt{6}}$</td>
</tr>
<tr>
<td>$x_1x_2x_4x_1$</td>
<td>$\frac{1}{\sqrt{6}}$</td>
</tr>
<tr>
<td>$x_1x_3x_4x_1$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$x_1x_4x_1x_2$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$x_2x_3x_4x_1$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$x_3x_4x_1x_2$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>$x_2x_1u u_1 u_2$</td>
<td>$\frac{1}{3\sqrt{6}}$</td>
</tr>
<tr>
<td>$x_2x_1u_1 u_2$</td>
<td>$\frac{1}{3\sqrt{6}}$</td>
</tr>
</tbody>
</table>

u x_1 x_6 v

<table>
<thead>
<tr>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>
There are nine paths of length 3 in P_{n-1} whose weights are changed. They are given in Table 18, and

$$\sum_{i=1}^{9} Q_i = -\frac{2}{3\sqrt{6}} - \frac{5}{36} = -\frac{1}{9}\sqrt{6} - \frac{5}{36}.$$

Table 18.

<table>
<thead>
<tr>
<th>P_i</th>
<th>$uu_1u_2u_3$</th>
<th>uuv_1u_3</th>
<th>uuv_1v_2</th>
<th>$vuv_1v_2v_3$</th>
<th>$vv_1v_2u_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_i</td>
<td>$1 - \frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{3\sqrt{6}}$</td>
</tr>
<tr>
<td>P_i</td>
<td>$vuv_1u_3u_4$</td>
<td>$vuv_1u_3u_2$</td>
<td>$vuv_1u_2u_2$</td>
<td>u_1uu_1</td>
<td></td>
</tr>
<tr>
<td>Q_i</td>
<td>$\frac{1}{9} - \frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
<td>$\frac{1}{6} - \frac{1}{6}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{2\sqrt{6}}$</td>
<td></td>
</tr>
</tbody>
</table>

And,

$$R_3(P_n) - R_3(P_{n-1}) = \left(\frac{5}{9}\sqrt{6} + \frac{83}{36}\right) + \left(-\frac{1}{9}\sqrt{6} - \frac{5}{36}\right) = \frac{4}{9}\sqrt{6} + \frac{39}{18} \quad (10)$$

Subcase II. H_3 is a turn-hexagon or a full-hexagon.

(i) If H_3 is a turn-hexagon and $d(v_3) = 3$, see Figure 5(3); (ii) If H_3 is a turn-hexagon and $d(v_3) = 2$, see Figure 5(4); (iii) If H_3 is a full-hexagon ($d(v_3) = 3$), see Figure 5(5).

Then, from P_{n-1} to P_n, the new added paths of length 3 and their weights are the same as in Table 17. Also, there are nine paths of length 3 in P_{n-1} whose weights are changed.

They are given in Table 19, and

$$\sum_{i=1}^{9} Q_i = -\frac{1}{\sqrt{6}} + \frac{1}{36} + \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}}\right) \frac{1}{\sqrt{d(v_3)}}$$

Table 19.

<table>
<thead>
<tr>
<th>P_i</th>
<th>$uu_1u_2u_3$</th>
<th>uuv_1u_3</th>
<th>uuv_1v_2</th>
<th>$vuv_1v_2v_3$</th>
<th>$vv_1v_2u_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_i</td>
<td>$\frac{1}{5} - \frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\frac{1}{9} - \frac{1}{6}$</td>
<td>$\left(\frac{1}{3\sqrt{6}} - \frac{1}{3\sqrt{2}}\right) \frac{1}{\sqrt{d(v_3)}}$</td>
<td>$\frac{1}{9} - \frac{1}{3\sqrt{6}}$</td>
</tr>
<tr>
<td>P_i</td>
<td>$vuv_1u_3u_4$</td>
<td>$vuv_1u_3u_2$</td>
<td>$vuv_1u_2u_2$</td>
<td>u_1uu_1</td>
<td></td>
</tr>
<tr>
<td>Q_i</td>
<td>$\frac{1}{5} - \frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{6}$</td>
<td>$\frac{1}{6} - \frac{1}{6}$</td>
<td>$\frac{1}{3\sqrt{6}} - \frac{1}{2\sqrt{6}}$</td>
<td></td>
</tr>
</tbody>
</table>

So, $R_3(P_n) - R_3(P_{n-1}) = \left(\frac{5}{9}\sqrt{6} + \frac{83}{36}\right) + \left(-\frac{1}{\sqrt{6}} + \frac{1}{36}\right) + \left(\frac{1}{3\sqrt{3}} - \frac{1}{3\sqrt{2}}\right) \frac{1}{\sqrt{d(v_3)}}$.

Since $2 \leq d(v_3) \leq 3$, we have

$$R_3(P_n) - R_3(P_{n-1}) = \begin{cases} \frac{1}{3}\sqrt{6} + \frac{22}{9}, & d(v_3) = 3; \\ \frac{4}{9}\sqrt{6} + \frac{30}{18}, & d(v_3) = 2. \end{cases} \quad (11)$$

Case III. H_2 is a full-hexagon, see Figure 5(6).

From P_{n-1} to P_n, the new added paths of length 3 are given in Table 20 and the sum of their weights is $\frac{1}{2}\sqrt{6} + \frac{67}{36}$.

-486-
Also, there are thirteen paths of length 3 in T_{n-1} whose weights are changed. They are given in Table 21, and
\[
\sum_{i=1}^{13} Q_i = f(u_5, v_5) = \left(-\frac{1}{3} \sqrt{6} + \frac{7}{8} \right) + \left(\frac{1}{3\sqrt{3}} - \frac{1}{2\sqrt{2}} \right) \left(\frac{1}{\sqrt{d(u_5)}} + \frac{1}{\sqrt{d(v_5)}} \right).
\]

<table>
<thead>
<tr>
<th>$x_1x_2x_3x_4$</th>
<th>$x_1x_5x_6x_4$</th>
<th>$x_1x_5x_7u_1$</th>
<th>$x_1u_1x_5x_7$</th>
<th>$x_1u_1x_5u_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
</tr>
<tr>
<td>$x_1u_1u_2$</td>
<td>$x_1u_1u_3$</td>
<td>$x_6x_5x_4x_3$</td>
<td>$x_6x_1x_2x_3$</td>
<td>$x_6x_1u_1$</td>
</tr>
<tr>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{9}$</td>
</tr>
<tr>
<td>$x_6u_1u_1$</td>
<td>$x_6u_1v_2$</td>
<td>$x_6u_1v_3$</td>
<td>$x_2x_3x_4x_5$</td>
<td>$x_2x_1x_6x_5$</td>
</tr>
<tr>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{9}$</td>
<td>$\frac{1}{2\sqrt{6}}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{9}$</td>
</tr>
<tr>
<td>$x_2x_1u_1$</td>
<td>$x_2x_1u_4$</td>
<td>$x_5x_6x_1u$</td>
<td>$x_5x_6u_1$</td>
<td>$x_3x_2x_1u$</td>
</tr>
<tr>
<td>$\frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{3\sqrt{6}}$</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>$x_4x_5x_6v$</td>
<td>ux_1x_6v</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{5}$</td>
<td>$\frac{1}{5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So, $R_3(P_n) - R_3(P_{n-1}) = \left(\frac{1}{2} \sqrt{6} + \frac{87}{36} \right) + f(u_5, v_5)$, and
\[
R_3(P_n) - R_3(P_{n-1}) = \begin{cases}
\frac{1}{18} \sqrt{6} + \frac{109}{36}, & d(u_5) = d(v_5) = 3; \\
\frac{5}{18} \sqrt{6} + \frac{89}{36}, & d(u_5) = d(v_5) = 3.
\end{cases}
\] (12)

5 Phenylenes with the extremal third-order Randić index

In this section, we will give the maximum and minimum third-order Randić indices of phenylenes and characterize the extremal graphs.

When $n = 1, 2, 3, 4$, the third-order Randić indices of phenylenes with n hexagons are shown in Figure 6, using Lemma in the section 4.
Theorem 3. Let P_n be a phenylene with n hexagons, $n \geq 2$. Then

$$R_3(P_n) \leq \left(\frac{7}{9} \sqrt{6} + \frac{53}{18}\right) + (n - 2) \left(\frac{8}{9} \sqrt{6} + \frac{10}{9}\right)$$

with equality if and only if P_n is the phenylene with n hexagons whose hexagonal squeeze is the linear hexagonal chain.

Proof. The result is true for $n = 2, 3, 4$, see Figure 6.

We suppose that the result is true for $n - 1$ ($n \geq 5$).

By the equations (9)-(12) and

$$\frac{8}{9} \sqrt{6} + \frac{10}{9} > \frac{1}{3} \sqrt{6} + \frac{22}{9} > \frac{4}{9} \sqrt{6} + \frac{39}{18} > \frac{1}{18} \sqrt{6} + \frac{109}{36} > \frac{1}{6} \sqrt{6} + \frac{11}{4} > \frac{5}{18} \sqrt{6} + \frac{89}{36}$$

we have

$$R_3(P_n) - R_3(P_{n-1}) \leq \frac{8}{9} \sqrt{6} + \frac{10}{9}$$

By the inductive hypothesis,

$$R_3(P_n) \leq R_3(P_{n-1}) + \left(\frac{8}{9} \sqrt{6} + \frac{10}{9}\right) \leq R_3(P_2) + (n - 2) \left(\frac{8}{9} \sqrt{6} + \frac{10}{9}\right)$$

i.e.,

$$R_3(P_n) \leq \left(\frac{7}{9} \sqrt{6} + \frac{53}{18}\right) + (n - 2) \left(\frac{8}{9} \sqrt{6} + \frac{10}{9}\right)$$

and from the equation (9), the equality holds if and only if P_n is the phenylene with n hexagons whose hexagonal squeeze is the linear hexagonal chain.

□

Let F_n denote the set of phenylenes with n hexagons satisfying the following:

(i) if n is even, then each hexagon of the phenylene is a full-hexagon or an end-hexagon;

(ii) if $n \geq 3$ is odd, then there is exactly one turn-hexagon in the phenylene and it is not adjacent to any end-hexagon in its hexagonal squeeze for $n \geq 7$, the other hexagons are full-hexagon or an end-hexagon.

From Figure 6, we can see that $R_3(F_2) = \frac{7}{9} \sqrt{6} + \frac{53}{18}$, $R_3(F_3) = \frac{11}{9} \sqrt{6} + \frac{46}{9}$ and $R_3(F_4) = \frac{3}{2} \sqrt{6} + \frac{91}{12}$.

By the equations (11) and (12), we can compute recursively that

\[
R_3(F_n) = \begin{cases}
\frac{7}{5}\sqrt{6} + \frac{53}{18}, & n = 2; \\
\frac{11}{9}\sqrt{6} + \frac{46}{9}, & n = 3; \\
\left(\frac{3}{2}\sqrt{6} + \frac{91}{12}\right) + \frac{n-4}{2} \left(\frac{1}{3}\sqrt{6} + \frac{22}{9}\right) + \frac{1}{6}\sqrt{6} + \frac{11}{4}\right)) , & n \geq 4 \text{ is even}; \\
\left(\frac{3}{2}\sqrt{6} + \frac{91}{12}\right) + \left(\frac{1}{3}\sqrt{6} + \frac{22}{9}\right) , & n=5; \\
\left(\frac{3}{2}\sqrt{6} + \frac{91}{12}\right) + 2 \left(\frac{1}{3}\sqrt{6} + \frac{22}{9}\right) + \left(\frac{5}{18}\sqrt{6} + \frac{89}{36}\right) \\
+ \frac{n-7}{2} \left(\frac{1}{3}\sqrt{6} + \frac{22}{9}\right) + \left(\frac{1}{6}\sqrt{6} + \frac{11}{4}\right)) , & n \geq 7 \text{ is odd}
\end{cases}
\]

for any \(F_n \in \mathcal{F}_n \).

Theorem 4. Let \(P_n \) be a phenylenes with \(n \geq 2 \) hexagons. Then \(R_3(P_n) \geq R_3(F_n) \) with equality if and only if \(P_n \in \mathcal{F}_n \).

Proof. We prove the result by the induction on \(n \). The result is true for \(n = 2, 3, 4 \) from Figure 6.

Suppose that the result is true for \(n - 1 \) (\(n \geq 5 \)). Let \(P_n \) be a phenylenes with \(n \) hexagons and the minimum third-order Randić index. \(H_1 \) is an end-hexagon which is farthest from the center of \(P_n \), \(H_2 \) is the hexagon adjacent to \(H_1 \) in its hexagonal squeeze. \(P_{n-1} = P_n - H_1 \).

\[
R_3 = \frac{3}{2}, \quad R_3 = \frac{7}{5}\sqrt{6} + \frac{53}{18}, \quad R_3 = \frac{5}{3}\sqrt{6} + \frac{73}{18}, \quad R_3 = \frac{11}{9}\sqrt{6} + \frac{46}{9}, \quad R_3 = \frac{23}{9}\sqrt{6} + \frac{93}{18}, \quad R_3 = \frac{19}{9}\sqrt{6} + \frac{56}{9}, \quad R_3 = \frac{3}{2}\sqrt{6} + \frac{131}{18}, \quad R_3 = \frac{14}{9}\sqrt{6} + \frac{68}{9}, \quad R_3 = \frac{3}{2}\sqrt{6} + \frac{91}{12}
\]

Figure 6.
Case I. H_2 is not a full-hexagon, see Figures 5(1)-(5).

(i) If P_n is the phenylene in Figure 5(1), then

$$R_3(P_n) = R_3(P_{n-1}) + \left(\frac{8}{9}\sqrt{6} + \frac{10}{9}\right)$$
(by the equation (9))

$$\geq R_3(F_{n-1}) + \left(\frac{8}{9}\sqrt{6} + \frac{10}{9}\right)$$
(by the inductive hypothesis)

where $F_{n-1} \in \mathcal{F}_{n-1}$. So,

$$R_3(P_n) \geq \begin{cases}
\left(\frac{3}{2}\sqrt{6} + \frac{91}{12}\right) + \frac{n-5}{2} \left(\frac{1}{3}\sqrt{6} + \frac{22}{9}\right) \\
+ \left(\frac{1}{9}\sqrt{6} + \frac{11}{4}\right) + \left(\frac{8}{9}\sqrt{6} + \frac{10}{9}\right), & n \geq 5 \text{ is odd;} \\
\left(\frac{3}{2}\sqrt{6} + \frac{91}{12}\right) + 2 \left(\frac{1}{3}\sqrt{6} + \frac{22}{9}\right) \\
+ \left(\frac{1}{18}\sqrt{6} + \frac{89}{36}\right) + \frac{n-6}{2} \left(\frac{1}{6}\sqrt{6} + \frac{11}{4}\right) \\
+ \left(\frac{1}{9}\sqrt{6} + \frac{11}{4}\right) + \left(\frac{8}{9}\sqrt{6} + \frac{10}{9}\right), & n \geq 8 \text{ is even}
\end{cases}$$

a contradiction.

(ii) If P_n is the phenylene in Figure 5(2), let $P_{n-2} = P_{n-1} - H_2$. Then

$$R_3(P_n) = R_3(P_{n-1}) + \left(\frac{4}{9}\sqrt{6} + \frac{39}{18}\right)$$
(by the equation (10))

$$= R_3(P_{n-2}) + \left(\frac{8}{9}\sqrt{6} + \frac{10}{9}\right) + \left(\frac{4}{9}\sqrt{6} + \frac{39}{18}\right)$$
(by the equation (9))

$$> R_3(P_{n-2}) + \left(\frac{1}{3}\sqrt{6} + \frac{22}{9}\right) + \left(\frac{1}{6}\sqrt{6} + \frac{11}{4}\right)$$

$$\geq R_3(F_{n-2}) + \left(\frac{1}{3}\sqrt{6} + \frac{22}{9}\right) + \left(\frac{1}{6}\sqrt{6} + \frac{11}{4}\right)$$
(by the inductive hypothesis)

$$\geq R_3(F_n)$$

a contradiction, where $F_{n-2} \in \mathcal{F}_{n-2}$.

(iii) If P_n is the phenylene in Figure 5(4), let $P_{n-2} = P_{n-1} - H_2$. Then

$$R_3(P_n) = R_3(P_{n-1}) + \left(\frac{4}{9}\sqrt{6} + \frac{39}{18}\right)$$
(by the equation (10))

$$\geq R_3(P_{n-2}) + \left(\frac{4}{9}\sqrt{6} + \frac{39}{18}\right) + \left(\frac{4}{9}\sqrt{6} + \frac{39}{18}\right)$$
(by the equation (10))
\[R_3(P_{n-2}) + \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) \geq R_3(F_{n-2}) + \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) \text{ (by the inductive hypothesis)} \]
\[\geq R_3(F_n) \]

a contradiction, where \(F_{n-2} \in F_{n-2} \).

(iv) If \(P_n \) is the phenylene in Figure 5(3) or (5), then

\[R_3(P_n) = R_3(P_{n-1}) + \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) \text{ (by the equation (11))} \]
\[\geq R_3(F_{n-1}) + \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) \text{ (by the inductive hypothesis)} \]
\[\text{ (with equality if and only if } P_{n-1} \in F_{n-1} \) \]

So,

\[
R_3(P_n) \begin{cases}
\left(\frac{3}{2} \sqrt{6} + \frac{91}{12} \right) + \frac{n-5}{2} \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) \\
+ \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) + \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right), & n \geq 5 \text{ is odd;} \\
\left(\frac{3}{2} \sqrt{6} + \frac{91}{12} \right) + \frac{n}{3} \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) \\
+ \left(\frac{5}{18} \sqrt{6} + \frac{5}{36} \right) + \frac{n-8}{2} \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) \\
+ \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) + \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right), & n \geq 8 \text{ is even} \\
\end{cases}
\]
\[\geq R_3(F_n), \]

with equality if and only if \(n = 5 \) and \(P_4 \in F_4 \), and then \(P_5 \in F_5 \).

Case II. \(H_2 \) is a full-hexagon, see Figure 7.

Subcase I. If \(H_4 \) is a full-hexagon, see Figure 7(1), then \(n \geq 6 \). Let \(P_{n-2} = P_{n-1} - H_3 \).

\[R_3(P_n) = R_3(P_{n-1}) + \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) \text{ (by the equation (12))} \]
\[= R_3(P_{n-2}) + \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) \text{ (by the equation (11))} \]
\[\geq R_3(F_{n-2}) + \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) \text{ (by the inductive hypothesis)} \]
\[\text{ (with equality if and only if } P_{n-2} \in F_{n-2} \) \]
\[\geq R_3(F_n) \text{ (with equality if and only if } n \neq 7 \) \]
So, $R_3(P_n) \geq R_3(F_n)$ with equality if and only if $P_n \in F_n$.

Subcase II. If H_4 is neither a full-hexagon nor a turn-hexagon, see Figure 7(2), let $P_{n-2} = P_{n-1} - H_3$ and $P_{n-3} = P_{n-2} - H_2$. Then

$$R_3(P_n) = R_3(P_{n-1}) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \quad \text{(by the equation (12))}$$

$$= R_3(P_{n-2}) + \left(\frac{4}{9} \sqrt{6} + \frac{39}{18} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \quad \text{(by the equation (11))}$$

$$= R_3(P_{n-3}) + \left(\frac{8}{9} \sqrt{6} + \frac{10}{9} \right) + \left(\frac{4}{9} \sqrt{6} + \frac{39}{18} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \quad \text{(by the equation (9))}$$

$$\geq R_3(F_{n-3}) + \left(\frac{8}{9} \sqrt{6} + \frac{10}{9} \right) + \left(\frac{4}{9} \sqrt{6} + \frac{39}{18} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \quad \text{(by the inductive hypothesis)}$$

where $F_{n-3} \in F_{n-3}$. So,

$$R_3(P_n) \geq \begin{cases}
\left(\frac{7}{5} \sqrt{6} + \frac{53}{25} \right) + \left(\frac{8}{9} \sqrt{6} + \frac{10}{9} \right) & n=5; \\
+ \left(\frac{4}{9} \sqrt{6} + \frac{39}{18} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right), \\
\left(\frac{11}{9} \sqrt{6} + \frac{46}{9} \right) + \left(\frac{8}{9} \sqrt{6} + \frac{10}{9} \right) & n=6; \\
+ \left(\frac{4}{9} \sqrt{6} + \frac{39}{18} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right), \\
\left(\frac{3}{2} \sqrt{6} + \frac{91}{12} \right) + \frac{n-7}{2} \left(\left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) \\
+ \left(\frac{4}{9} \sqrt{6} + \frac{14}{9} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \right) & n \geq 7 \text{ is odd}; \\
+ \left(\frac{8}{9} \sqrt{6} + \frac{10}{9} \right) + \left(\frac{3}{2} \sqrt{6} + \frac{91}{12} \right) + 2 \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) & n=8; \\
\left(\frac{3}{2} \sqrt{6} + \frac{91}{12} \right) + 2 \left(\left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \right) \\
+ \frac{n-10}{2} \left(\left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) \right) & n \geq 10 \text{ is even}; \\
+ \left(\frac{8}{9} \sqrt{6} + \frac{10}{9} \right) + \left(\frac{4}{9} \sqrt{6} + \frac{39}{18} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right), & n \geq 10 \text{ is even} \\
\end{cases} \quad > R_3(F_n),$$

a contradiction.

Subcase III. H_4 is a turn-hexagon, see Figures 7(3)-(6).
(i) When H_5 is not a full-hexagon, see Figures 7(3)-(5), we have $R_3(P_n) > R_3(G_0)$ by Lemma in the section 4, a contradiction.

(ii) When H_5 is a full-hexagon, see Figure 7(6), then $n \geq 7$.

$$R_3(P_n) = R_3(P_{n-1}) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \quad \text{(by the equation (12))}$$

$$= R_3(P_{n-2}) + \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \quad \text{(by the equation (11))}$$

$$= R_3(P_{n-3}) + 2 \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \quad \text{(by the equation (11))}$$

$$\geq R_3(F_{n-3}) + 2 \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \quad \text{(by the inductive hypothesis, and with equality iff $P_{n-3} \in \mathcal{F}_{n-3}$)}$$

where $F_{n-3} \in \mathcal{F}_{n-3}$. So,

$$R_3(P_n) \geq \begin{cases}
\left(\frac{3}{2} \sqrt{6} + \frac{91}{12} \right) + \frac{n-7}{2} \left(\left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) \right) \\
+2 \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \\
\text{(with equality iff $P_{n-3} \in \mathcal{F}_{n-3}$ and $n - 3$ is even),} \\
\text{n \geq 7 is odd;} \\
\left(\frac{3}{2} \sqrt{6} + \frac{91}{12} \right) + \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) \\
+2 \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \\
\left(\frac{3}{2} \sqrt{6} + \frac{91}{12} \right) + 2 \left(\left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) \right) = R_3(F_8), \\
\text{n = 8;} \\
\left(\frac{3}{2} \sqrt{6} + \frac{91}{12} \right) + 2 \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \\
+ \frac{n-10}{2} \left(\left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) \right) \\
+2 \left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{5}{18} \sqrt{6} + \frac{89}{36} \right) \\
\left(\frac{3}{2} \sqrt{6} + \frac{91}{12} \right) + \frac{n-4}{2} \left(\left(\frac{1}{3} \sqrt{6} + \frac{22}{9} \right) + \left(\frac{1}{6} \sqrt{6} + \frac{11}{4} \right) \right) = R_3(P_n), \\
\text{n \geq 10 is even} \\
i.e., R_3(P_n) \geq R_3(F_n) \text{ with equality if and only if } n \geq 7 \text{ is odd and } P_n \in \mathcal{F}_n.$$

\[\square\]

Remark. From the theorems 3-4 and the results in [17], we know that

(i) if a phenylene P_n has the maximum third-order Randić index among all phenylenes with n hexagons, then its hexagonal squeeze also has the maximum third-order Randić index among all catacondensed hexagonal systems with n hexagons; but
(ii) if a phenylene P_n has the minimum third-order Randić index among all phenylenes with $n \geq 4$ hexagons, then its hexagonal squeeze needs not to have the minimum third-order Randić index among all catacondensed hexagonal systems with n hexagons.

Figure 7.
References

[18] H. Deng, Double hexagonal chains with the extremal third–order Randić index, *Ars Combin.* ACCEPTED.