Some New Sharp Bounds on the Distance Spectral Radius of Graph

Chang-Xiang Hea\textdagger, Ying Liub, Zhen-Hua Zhaoc

aCollege of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
bCollege of Mathematics and Information, Shanghai Lixin University of Commerce, Shanghai, 201620, China
cSchool of Mathematics and Physics, Chongqing Institute of Technology, Chongqing, 400050, China

(Received April 28, 2009)

Abstract: The D-eigenvalues $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$ of a graph G are the eigenvalues of its distance matrix D and form the D-spectrum of G denoted by $\text{spec}D(G)$. The greatest D-eigenvalue is called the distance spectral radius of G, denoted by λ_1. In this paper we obtain some new lower and upper bounds for λ_1, and also show that all of our bounds are sharp.

1 Introduction

Let G be a connected graph with vertex set $V(G) = \{v_1, v_2, \cdots, v_n\}$. The distance matrix $D = D(G)$ of G is defined so that its (i, j)-entry, d_{ij}, is equal to $d_G(v_i, v_j)$, the distance (length of the shortest path) between the vertices v_i and v_j of G. Then the distance matrix of a connected distance graph is irreducible and symmetric. The eigenvalues of $D(G)$ are said to be the D-eigenvalues of G and form the D-spectrum of G, denoted by $\text{spec}D(G)$. Since the distance matrix is symmetric, all

*Research supported by the National Natural Science Foundation of China 10601038 and slg07032.
†Corresponding author email: changxianghe@hotmail.com.
its eigenvalues $\lambda_i, i = 1, 2, \cdots, n$, are real and can be labeled so that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

The ordinary spectrum of G, which is the spectrum of the adjacency matrix of G is well studied and many properties of graphs in connection with the spectrum are revealed during the past years. For details see the book [1] and the references cited therein. The greatest eigenvalue of the distance matrix of a graph G, λ_1 is called the distance spectral radius. For some recent works on distance spectrum of graphs, see [2–4]. In [3], the author gave some lower bounds for λ_1 and characterize those graphs for which these bounds are best possible. In this paper, we present some new lower and upper bounds for λ_1, and also prove that all of our bounds are sharp.

2 Main results and lemmas

Definition 2.1 Let G be a graph with $V(G) = \{v_1, v_2, \cdots, v_n\}$ and a distance matrix $D = (d_{ij})$. Then the distance degree of v_i, denoted by D_i, is given by $D_i = \sum_{j=1}^{n} d_{ij}$.

Definition 2.2 Let G be a graph with $V(G) = \{v_1, v_2, \cdots, v_n\}$, a distance matrix $D = (d_{ij})$, and a distance degree sequence $\{D_1, D_2, \cdots, D_n\}$. Then the second distance degree of v_i, denoted by T_i, is given by $T_i = \sum_{j=1}^{n} d_{ij}D_j$.

Definition 2.3 Let G be a graph with distance degree sequence $\{D_1, D_2, \cdots, D_n\}$ and second distance degree sequence $\{T_1, T_2, \cdots, T_n\}$. Then G is pseudo k-distance regular if $\frac{T_i}{D_i} = k$ for all $1 \leq i \leq n$.

Definition 2.4 Let A be a matrix. We use $s_i(A)$ to denote the ith row sum of A.

The proof of Lemma 2.1 in [5] implies the following slightly stronger version.

Lemma 2.1 [5] Let A be a real symmetric $n \times n$ matrix, and let λ be an eigenvalue of A with an eigenvector x all of whose entries are nonnegative. Then

$$\min_{1 \leq i \leq n} s_i(A) \leq \lambda \leq \max_{1 \leq i \leq n} s_i(A).$$
Moveover, if all entries of \(x \) are positive then either of the equalities holds if and only if the row sums of \(A \) are all equal.

Lemma 2.2 [6] Let \(A \) be a nonnegative irreducible \(n \times n \) matrix with spectral radius \(\lambda \). Then \(\lambda \) is a simple eigenvalue of \(A \), and if \(x \) is an eigenvector with eigenvalue \(\lambda \), then all entries of \(x \) are nonzero and have the same sign.

Corollary 2.1 Let \(A \) be a nonnegative irreducible \(n \times n \) matrix with spectral radius \(\lambda \). Then

\[
\min_{1 \leq i \leq n} s_i(A) \leq \lambda \leq \max_{1 \leq i \leq n} s_i(A).
\]

Equalities holds if and only if the row sums of \(A \) are all equal.

Theorem 2.1 Let \(G \) be a connected graph with distance degree sequence \(\{D_1, D_2, \ldots, D_n\} \), second distance degree sequence \(\{T_1, T_2, \ldots, T_n\} \), and distance spectral radius \(\lambda_1 \). Then

\[
\min \{m_i : 1 \leq i \leq n\} \leq \lambda_1 \leq \max \{m_i : 1 \leq i \leq n\}.
\]

(1)

where \(m_i = \frac{T_i}{D_i} \). Moveover, any equality holds if and only if \(G \) is pseudo distance regular.

Proof. Let \(M = \text{diag}(D_1, \ldots, D_n) \). Then \((i,j)\)-entry of \(M^{-1}DM \) is \(\frac{d_i D_j}{D_i} \), and

\[
s_i(M^{-1}DM) = \frac{T_i}{D_i} = m_i \quad (1 \leq i \leq n).
\]

It is not difficult to see that \(M^{-1}DM \) is a nonnegative irreducible \(n \times n \) matrix with spectral radius \(\lambda_1 \). Now we use Corollary 2.1 by taking \(A = M^{-1}DM \), the desired result holds.

Now we assume that \(G \) is pseudo distance regular, then \(m_i = \frac{T_i}{D_i} = k \) for all \(i \), and hence \(\min \{m_i : 1 \leq i \leq n\} = \max \{m_i : 1 \leq i \leq n\} = k \). Thus both of the equalities hold.

Conversely, if one of the equalities holds, by Corollary 2.1, the row sums of \(M^{-1}DM \) are all equal. That is, \(m_i = \frac{T_i}{D_i} \) \((1 \leq i \leq n)\) are all equal, which may implies that \(G \) is a pseudo distance regular graph. \(\Box \)
Theorem 2.2 Let G be a connected graph with second distance degree sequence $\{T_1, T_2, \cdots, T_n\}$, and distance spectral radius λ_1. Then

$$\min\{\sqrt{T_i} : 1 \leq i \leq n\} \leq \lambda_1 \leq \max\{\sqrt{T_i} : 1 \leq i \leq n\}.$$ \hspace{1cm} (2)

Moreover, any equality holds if and only if G has same value of T_i for all i.

Proof. Let $D = (d_{ij})$ be the distance matrix of G and $\{D_1, D_2, \cdots, D_n\}$ be the distance degree sequence of G. Since $(D^2)_{ij} = \sum_{k=1}^{n} d_{ik}d_{kj}$, we have

$$s_i(D^2) = \sum_{j=1}^{n} \sum_{k=1}^{n} d_{ik}d_{kj}$$

$$= \sum_{k=1}^{n} d_{ik} \sum_{j=1}^{n} d_{kj}$$

$$= \sum_{k=1}^{n} d_{ik}D_k$$

$$= T_i$$

Let x be an eigenvector corresponding to λ_1, all of whose entries are positive, that is, $Dx = \lambda_1 x$, then $D^2x = \lambda_1^2 x$. By Lemma 2.1,

$$\min\{T_i : 1 \leq i \leq n\} \leq \lambda_1^2 = \lambda(D^2) \leq \max\{T_i : 1 \leq i \leq n\}.$$

Thus $\min\{\sqrt{T_i} : 1 \leq i \leq n\} \leq \lambda_1 \leq \max\{\sqrt{T_i} : 1 \leq i \leq n\}$.

Now we assume that G has same value of T_i for all i, then $\min\{\sqrt{T_i} : 1 \leq i \leq n\} = \max\{\sqrt{T_i} : 1 \leq i \leq n\}$, both of the equalities hold.

Conversely, if one of the equalities holds, that is, $\lambda_1^2 = \min\{T_i : 1 \leq i \leq n\}$ or $\lambda_1^2 = \max\{T_i : 1 \leq i \leq n\}$. By Corollary 2.1, $s_i(D^2) = T_i^2$ (1 $\leq i \leq n$) all are equal. So G has same value of T_i for all i.

\[\Box\]

Theorem 2.3 Let G be a connected graph of order n, and λ_1 be the distance spectral radius, then

$$\lambda_1 \leq \max\{\sqrt{m_im_j} : 1 \leq i, j \leq n\},$$ \hspace{1cm} (3)
where \(m_i = \frac{T_i}{D_i} \). Moreover, the equality holds if and only if \(G \) is a pseudo distance regular graph.

Proof. Let \(M = \text{diag}(D_1, \ldots, D_n) \) and \(x = (x_1, x_2, \ldots, x_n)^T \) be an eigenvector of \(M^{-1}DM \) corresponding to the eigenvalue \(\lambda_1 \). Also let one entry, say \(x_i \), be equal to 1 and the other entries be less than or equal to 1, that is, \(x_i = 1 \) and \(0 \leq x_k \leq 1 \) for any \(k \). Let \(x_j = \max\{x_k : k \neq i\} \).

Now the \((i, j)\)-entry of \(M^{-1}DM \) is \(\frac{d_{ij}D_j}{D_i} \), and

\[
M^{-1}DMx = \lambda_1 x
\]

From the \(i \)th equation of (4),

\[
\lambda_1 x_i = \sum_{k=1}^{n} \frac{d_{ik}D_kx_k}{D_i} \\
= \frac{1}{D_i} \sum_{k=1}^{n} d_{ik}D_kx_k \\
\leq \frac{d_{ii}D_ix_i}{D_i} + \frac{x_j}{D_i} \sum_{k=1, k \neq i}^{n} d_{ik}D_k \\
= \frac{x_j}{D_i} \sum_{k=1, k \neq i}^{n} d_{ik}D_k \\
= \frac{x_j}{D_i} \sum_{k=1}^{n} d_{ik}D_k \\
= \frac{T_i}{D_i} x_j = m_i x_j \quad (5)
\]

From the \(j \)th equation of (4),

\[
\lambda_1 x_j = \sum_{k=1}^{n} \frac{d_{jk}D_kx_k}{D_j} \\
= \frac{1}{D_j} \sum_{k=1}^{n} d_{jk}D_kx_k \\
\leq \frac{1}{D_j} \sum_{k=1}^{n} d_{jk}D_k \\
= \frac{T_j}{D_j} \\
= m_j \quad (6)
\]
Combing (5), (6) and $x_i = 1$, we get $\lambda_i^2 \leq m_i m_j$.

Therefore, $\lambda_1 \leq \sqrt{m_i m_j} \leq \max\{\sqrt{m_i m_j} : 1 \leq i, j \leq n\}$.

Now we assume that G is pseudo distance regular, so $\frac{T_i}{D_i} = k$ or $T_i = k D_i$ for all i. Then

$$D(D_1, D_2, \cdots, D_n)^T = k(D_1, D_2, \cdots, D_n)^T$$

showing that $(D_1, D_2, \cdots, D_n)^T$ is an eigenvector corresponding to k. Note that

$\lambda_1 \leq \sqrt{k^2}$, we have $\lambda_1 = k$. Thus the equality holds.

Conversely, if λ_1 attains the upper bound then all equalities in the above argument must hold. In particular, from (6) that $x_k = 1$, for $1 \leq k \leq n$, that is, $x = (1, 1, \cdots, 1)^T$. Hence $M^{-1} D M (1, 1, \cdots, 1)^T = \lambda_1 (1, 1, \cdots, 1)^T$, this then implies that

$$\frac{T_k}{D_k} = \frac{\sum_{j=1}^n d_{kj} D_j}{D_j} = \lambda_1$$

or in other words G is pseudo distance regular. \hfill \qed

References

