
Kragujevac J. Sci. 39 (2017) 5-16.               UDC 539.319 
 
 

 
ELASTIC-PLASTIC TRANSITION ON ROTATING 

SPHERICAL SHELLS IN DEPENDENCE OF COMPRESSIBILITY 
 
 

Pankaj Thakur1*, Gaurav Verma2, D.S. Pathania3, Satya Bir Singh4 
 

1Department of Mathematics, ICFAI University Baddi, Solan, Himachal Pradesh 174103, 
India 

2Department of Applied Science, I.K. Gujral, Punjab Technical University Jalandhar, 
Ibban, Kapurthala144603, India 

3Department of Mathematics, Guru Nanak Dev Engineering College Ludhiana,  
Punjab 141006, India 

4Department of Mathematics, Punjabi University Patiala, Punjab 147002, India 
*Corresponding author; E-mail:dr_pankajthakur@yahoo.com 

 
(Received April22, 2016; Accepted September 2, 2016) 

 
 

ABSTRACT. The purpose of this paper is to establish the mathematical model on the 
elastic-plastic transitions occurring in the rotating spherical shells based on compre-
ssibility of materials. The paper investigates the elastic-plastic stresses and angular speed 
required to start yielding in rotating shells for compressible and incompressible materials. 
The paper is based on the non-linear transition theory of elastic-plastic shells given by 
B.R. Seth. The elastic-plastic transition obtained is treated as an asymptotic phenomenon 
at critical points & the solution obtained at these points generates stresses. The solution 
obtained does not require the use of semi-empirical yield condition like Tresca or Von 
Mises or other certain laws. Results are obtained numerically and depicted graphically. It 
has been observed that Rotating shells made of the incompressible material are on the 
safer side of the design as compared to rotating shells made of compressible material. The 
effect of density variation has been discussed numerically on the stresses. With the effect 
of density variation parameter, rotating spherical shells start yielding at the internal 
surface with the lower values of the angular speed for incompressible/compressible 
materials. 
 
Keywords: Shells, elastic-plastic, yielding, stress, strain, speed, compressibility 

 
 
 

INTRODUCTION 
 

Rotating shell structures have many engineering applications like aviation, rocketry, 
missiles, electric motors and locomotive engines. Engineers have found its increasing appli-
cation in aerospace, chemical, civil and mechanical industries such as in high-speed centri-
fugal separators, gas turbines for high-power aircraft engines, spinning satellite structures, 
certain rotor systems and rotating magnetic shields (SHAMBHARKAR , 2008). To increase the 
strength of shells or shafts, it is, therefore, very important for engineers to study the behavior 
of transition of rotating shells. A shell is a curved surface, in which the thickness is much 
smaller than the remaining dimensions. The geometrical properties of shells, i.e. single or 
double curvature give rise to a tremendous advantage of these light-weight structures 
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(WOELKE, 2005). Analysis and design of these structures are, therefore, continuously of 
interest to the scientific and engineering community. The accurate and conservative 
assessments of the maximum load carried by the structure, as well as the equilibrium path in 
both elastic and plastic range are of paramount importance. Solutions for thin spherical shells 
can be found in most of the standard elasticity and plasticity textbooks (TIMOSHENKO and 
GOODIER, 1970; CHAKRABARTY , 1987). Elastic behavior of shells has been very closely 
investigated, mostly by means of the finite element method. Many authors like R. EBERLEIN, 
WRIGGERS, CIVALEK , GÜRSES have done elastic-plastic calculations in shells by using the 
various theoretical and numerical approaches based on finite element method, shear 
deformation theory, discrete convolution technique (SCHMIDT and WEICHERT, 1989; SIMO et 
al.,1990; EBERLEIN and WRIGGERS, 1999; CIVALEK and GÜRSES, 2009). This paper is based 
on the non-linear transition theory of elastic-plastic shells. Here in this paper, the elastic-
plastic problem of rotating spherical shells based on the different degree of compressibility 
has been solved by using the concept of generalized strain measures and transition theory. The 
distribution of stresses and yielding in an elastic-plastic rotating shell has been calculated by 
using the concept of generalized strain measures and the generalized Hooke's law at the 
critical points of the non-linear differential equation defining the equilibrium stage. The 
transition theory of elastic-plastic of shells do not use the ad-hoc assumptions like 
incompressibility, yield conditions those of Tresca, Von Mises and creep-strain laws like 
those of Norton, ODQVIST (1964). This theory has been used to solve various elastic-plastic 
transition problems (SETH, 1963; HULSARKAR, 1981; GUPTA and PATHAK , 2000). SETH (1966) 
has defined the concept of generalized strain measure as 

��� = � �1 − 2���	
��
 ����	 = �

�
����

� �1 − (1 − 2���	)�
, (i=1,2,3)                                                   (1) 

where n is the measure  ���	 is the almansi finite strain components. 

The accurate calculation of radial and circumferential stresses is essential for efficient design 
and long life of mechanical structures. In this paper, elastic-plastic stresses are determined by 
using the asymptotic solution at critical points and required angular speed to start initial 
yielding in the shell without using any semi-empirical yield condition and other certain laws. 
We analyze the non-linear transition problem of thin rotating spherical shell by using the 
generalized strain measures and Seth's transition theory for different values of the 
compressibility. The effect of density variation parameter has been discussed numerically and 
depicted graphically.  
 
 

MATHEMATICAL MODEL 
 

Consider aspherical shell of constant thickness with the internal radius a and the 
external radius b. The shell is rotating with angular velocity ω about an axis perpendicular to 
its plane and passing through the center of the shell so that the axial stress is zero. The 
thickness of the shell is constant and is effectively in a state of plane stress. The spherical 
shell considered in the present study has no stress initially. The inner surface of the spherical 
shell is assumed to be fixed to a shaft.  
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Figure1. Geometry of rotating spherical shell. 
 
 
Formulation of the problem: 
 
Due to the symmetry in the elastic properties, the displacement is purely radial. 

Therefore, we take the displacements in spherical coordinates as(�, �, �). 

u = r(1−β) , v = 0 , w = 0 where β is function of  r =��� � �� �  �                                    (2) 

The finite strain components are given by Seth as 

�!!	  = 
�
� [ 1−(�"# � ")�]    , �$$	 = �%%	 = �

� (1 � "�� 
�!$				 � �$%			 � �!%		 � 	0                                                                                                         (3) 

where "# =  
()
(!  

By using equation (3) in equation (1) , the generalized components of the strain are given as 

�!!= 
�
� [ 1���"# � "��]  , �$$= �%% � �

� �1 � "
��                                                                (4) 

�!$	 � �%$	 � �%! � 	0 

The stress - strain relations for the isotropic material are given by SOKOLNIKOFF (1946). 

a  

b

Shaft 
Angular  
Velocity  
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*�+ � ,-�+.� � 2/��+		,			�0, 1 � 1,2,3�                                                                                      (5) 

where , and / are lame's constants and .� =�33  is called first strain invariant. 
By using equation (4) in equation (5), the corresponding stresses are given as 

*!! =45�6� �1 � ��"# � "��
 +�4� �1 � "
�� 

*$$ � *%% =
4
� �1 � ��"

# � "��
 +�45�6� �1 � "��                                                                   (6) 

*!$ � *$% � *!% � 0 

The equations of equilibrium are all satisfied for rotating body except 

� (�788�(! �	*!! 	� 	*$$ � 9:��� 			� 0		                                                                                    (7) 

We get the non-linear differential equation by using equation (6) in equation (7) as given 

;"�5�<�1 � <��=� �<�" �
;>9:���

2/ � "��>�1 � �1 � <��� � ;<?2�1 � >� � �1 � <��@

� 0	 

                                                                                                                                                  (8) 

where c denotes the compressibility of material and given as > � 	2/ , � 2/⁄  , r"# ="P 

The transition points of "  from equation (8) are <	 → 1	C;�	< →	D∞  where < →	D∞ 
corresponds to elastic-plastic transitions and <	 → 1 corresponds to creep transitions. So, we 
take into consideration only < → 	D∞. 
 
 

SOLUTION THROUGH THE PRINCIPAL STRESS 
 

In order to find the plastic stresses, the transition function is defined using the 
principal stress as taken by SETH (1963), THAKUR (2010, 2011), THAKUR et al. (2015, 2016) at 
the transition point < →	D∞. We define the transition function as  

G � �
�6 *$$ �

H=�I
I � )�

I ��1 � >��1 � <�
� �	�2 � >�
                                                           (9) 

Taking the logarithmic differentiation of equation (9) with respect to r and using equation (8). 

�JKLG
��

� 	�
;<"��2 � >� � "�>�1 � >� M1 � �1 � <�� � 2;< � �NO!

�6)� P
�Q�3 � 2>� � "���1 � >��1 � <�� �	�2 � >�
R 																																													�10� 

Now by taking the asymptotic value of equation (10) at		< → 	D∞  and integrating, we have 

G � 	S��=I                                                                                                                             (11) 
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where  S� is a constant of integration, which can be determined by the boundary conditions. 
The boundary conditions are given as 

*!!  =  0  at r = a and  *!! = 0    at r = b 

From equation (9) and equation (10), we get 

*$$ = �6
� S��=I                                                                                                                       (12) 

Use equation (12) in equation (7) and integrating, we get as 

*!! = �6 
�(�=I) S��=I − NO!

H � 	
!                                                                                             (13) 

 
where  S� is a constant of integration, which can be determined by using boundary conditions. 
Therefore, the value of the constants  S� andS� are given as 

S� =  NO�
T6

UVW=XWY(�=I)
(VZ�[=XZ�[)                                                                                                            (14) 

S� =  NO
H

(V[\=X[\)
(V[�Z=X[�Z)                                                                                          (15) 

By using the values of S� and S� in the equations (12) and (13), we have  

*$$ = NO
H

(VW=XW)(�=I)
(VZ�[=XZ�[) �=I                                                                                 (16) 

*!! = NO
H

(VW=XW)
(VZ�[=XZ�[) �=I − NO!

H � NO
H!

(V[\=X[\)
(V[�Z=X[�Z)                                         (17) 

Initial Yielding: From equation (16), we can observe that *$$ is maximum at r=a, that is the 
internal surface of the shell. Therefore, the yielding of spherical shell will start at the internal 
surface given as 

| *$$|^ _ `  =  NO
H

UVW=XWY(�=I)
(VZ�[=XZ�[) C=I ≡ b(cC�)                                                                        (18) 

The angular speed required for initial yielding is given as 

Ω�� = NOX
e =  H(VZ�[=XZ�[)

(VW=XW) f�C=I                                                                                          (19) 

Fully Plastic state: On increasing the speed of rotation, the yielding in the shell will go on an 
increase and the shell become more and more plastic for some value of the angular speed. To 
attain fully plastic state, we will make c→0 at the external surface r = b. 

| *$$|^ _ g  =  NO
H

UVW=XWY
(V=X) ≡ b∗(say)                                                                                      (20) 

The angular speed required for Fully plastic state is given as 
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Ωi� �
NOX
e∗ � 3f� (V=X)

(VW=XW)                                                                                                      (21) 

Further we are introducing the non-dimensional components as 

R = r/b,  Gj = a/b,k! = *!!/Y ,  k$ = *$$/Y 

Therefore, the transitional stresses and the angular speed by using the equations (16), (17) and 
(19) are as follow 

k$ =  7ll
m =  n�UopW=�Y(�=I)

HUopZ�[=�Y G=I                                                                         (22) 

k! =  788
m =  n�

H q UopW=�Y
UopZ�[=�Y G=I − G� � �

o
Uop[\=�Y
Uop[�Z=�Yr                                            (23) 

Ω�� =  H(opZ�[=�)
UopW=�Y(�=I) Gj=I                                                                                                          (24) 

Fully Plastic state: 

k$ = ns
H (Gj� � Gj � 1)                                                                                                         (25) 

k! = ns
H MUGj� � Gj � 1Y − G� − op(op5�)

o P                                                                           (26) 

Ωi� = H(op=�)
UopW=�Y                                                                                                                          (27) 

These results obtained for transitional stresses and the angular speed for rotating spherical 
shell is same as given by SHARMA and SAHNI (2009). 

 
 

DENSITY VARIABLE PARAMETER IN SHELL 
 

Now we discuss the influence of density on the elastic -plastic stresses in an isotropic 
thin rotating spherical shell. Consider the density of spherical shell varies along the radius in 
the following form: 

9 =  90 tr
bw−x

 

where 9� is the constant density taken at  r = b and m is the density variable parameter in 
rotating shell. 
By introducing the density variable parameter in the equations (7), (12), (13), (14), (15), we 
get the values of transitional stresses and angular speed required for the initial yielding and for 
the fully plastic state.  
These expressions in the non - dimensional form are given as Initial Yielding: 
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k$ �  n�UopW�y=�Y(�=I)
(H=z)UopZ�[=�Y G=I                                                                                (28) 

k! =   n�
H=z qUopW�y=�Y

UopZ�[=�Y G=I − G�=z � �
o

Uop[\�y=�Y
Uop[�Z=�Y r                                         (29) 

Ω�� =  (H=z)(opZ�[=�)
UopW�y=�Y(�=I) Gj=I                                                                                                      (30) 

Fully Plastic state: 

k$ =  nsUopW�y=�Y
(H=z)(op=�)                                                                                                               (31) 

k! =   ns
H=z qUopW�y=�Y

(op=�) − G�=z � �
o

Uop�y=�Y
Uop�Z = �Y r                                                   (32) 

Ωi� = (H=z)(op=�)
UopW�y=�Y                                                                                                                     (33) 

For numerical calculations of the stresses and angular speed based on the above formulas, the 
following numerical values are taken as  C=0, 0.25, 0.5, 0.75 and m=0, 1, 2.  

Table1. Angular speed required for initial yielding and fully plastic state. 

 

 

 

 

 

0.5≤R≤1 

 

 

 
Density 

variation 
parameter 

(m) 

 
 
 
 

Compressibility 

 
 
 
 

{|} 

 
 
 
 

{~} 

Percentage increase in the 
angular speed to become 

fully plastic-state 

P% =  ��Ωi� Ω��  − 1⁄ � 
×100 

0 
1 
2 

 
C=0 

1.6435 
1.0957 
0.5478 

1.71428 
1.1428 
0.57142 

20.75 
20.73 
20.72 

0 
1 
2 

 
C=0.25 

1.5582 
1.0388 
0.5194 

1.71428 
1.1428 
0.57142 

31.65 
31.64 
31.63 

0 
1 
2 

 
C=0.5 

1.4197 
0.9465 
0.4732 

1.71428 
1.1428 
0.57142 

45.55 
45.54 
45.53 

 
 

NUMERICAL ILLUSTRATION AND DISCUSSION 
 

For calculating stresses and angular speed based on the above analysis, the following 
values have been taken, ν  = 0.5 (incompressible material), ν = 0.42857, 0.333 and 0.2 (com-
pressible materials). From Table 1, it has been seen that the angular speed required for the 
initial and fully plastic state is calculated with different compressibility factors. It has been 
observed that shells made of an incompressible material (like rubber) require higher angular 
speed as compared to shells made of compressible materials (like plastics, copper) at the inner 
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surface (i.e.  r = a). It can also be observed that for compressible material, the higher 
percentage increase in angular speed is required to attain fully plastic state as compared to 
rotating spherical shells made of the incompressible material. It is also observed that rotating 
shells with density variation require lesser angular speed to start yielding as compared to 
shells without density variation. It means that rotating shell with variable density has a 
tendency to fracture at the bore of the shell. The curve is produced from fig. 2, between the 
angular speed required for initial yielding and various radii ratios R�  for the different values 
of compressibility factor C and density variation parameter m. It has been observed that the 
compressible materials require lesser angular speed to start yield as compared to 
incompressible materials in the absence of density variation parameter. Density parameter 
decreases values of angular speed for incompressible as well as compressible material. 
Therefore, rotating spherical shells made of the incompressible material is on the safer side of 
the design as compared to rotating spherical shells made of compressible material. Curves are 
produced between stresses along the radii ratio R = r/b for compressible material and 
incompressible material (see figs. 3-6) and different density parameter values. It has been seen 
that circumferential stresses maximum at the internal surface of the compressible material as 
compared to the incompressible material of spherical shell. With the introduction density 
parameter, circumferential as well as radial must be decreased at the internal surface of the 
spherical shell. 

 

 
Figure2.Angular Speed required for initial yielding for various radii ratios G� =a / b in rotating shell 

with the effect of variable density parameter (m = 0, 2). 
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Figure3. Stresses distribution with respect to radii ratio R = r/b for C = 0.25. 

 

 

Figure4. Stress distribution with respect to radii ratio R = r/b for C = 0.5. 

 

 

Figure5. Stress distribution with respect to radii ratio R = r/b for C = 0.75. 
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Figure6. Stress distribution with respect to radii ratio R = r/b for C = 0. 
 
 
 
Nomenclature 
a,b - Inner and outer radii of the spherical shell [m], 

ω  - Angular velocity [ -1s ], 

u,v,w - Displacement components, [m], 

ρ  - Density of material, [ -3kgm ], 

C - Compressibility factor, [-], 

,ij ijT e  - Stress and Strain rate tensor [ -1 -2kgm s ], 

Y  - Yield stress, [ -1 -2kgm s ], 

  - Radii ratio, [-], 

   - angular speed, 

 - Radial stress component ( /rrT Y ), [-] 

  - Circumferential stress component  ( /T Yθθ ), [-]  
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