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ABSTRACT. The purpose of this paper is to establish the madlieal model on the
elastic-plastic transitions occurring in the ratgtispherical shells based on compre-
ssibility of materials. The paper investigates ¢lastic-plastic stresses and angular speed
required to start yielding in rotating shells fangpressible and incompressible materials.
The paper is based on the non-linear transitionrthef elastic-plastic shells given by
B.R. Seth. The elastic-plastic transition obtaifetieated as an asymptotic phenomenon
at critical points & the solution obtained at thgments generates stresses. The solution
obtained does not require the use of semi-empiyiigdtl condition like Tresca or Von
Mises or other certain laws. Results are obtaingderically and depicted graphically. It
has been observed that Rotating shells made oihttwenpressible material are on the
safer side of the design as compared to rotatietissinade of compressible material. The
effect of density variation has been discussed nigally on the stresses. With the effect
of density variation parameter, rotating spherishélls start yielding at the internal
surface with the lower values of the angular sp&®dincompressible/compressible
materials.
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INTRODUCTION

Rotating shell structures have many engineerindicgimns like aviation, rocketry,
missiles, electric motors and locomotive enginawiieers have found its increasing appli-
cation in aerospace, chemical, civil and mechani@distries such as in high-speed centri-
fugal separators, gas turbines for high-power aftcengines, spinning satellite structures,
certain rotor systems and rotating magnetic shi€EiaMBHARKAR, 2008). To increase the
strength of shells or shafts, it is, therefore yvenportant for engineers to study the behavior
of transition of rotating shells. A shell is a cedvsurface, in which the thickness is much
smaller than the remaining dimensions. The geon@tproperties of shells, i.e. single or
double curvature give rise to a tremendous advantafgthese light-weight structures
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(WOELKE, 2005). Analysis and design of these structures trerefore, continuously of
interest to the scientific and engineering communiThe accurate and conservative
assessments of the maximum load carried by thetatey as well as the equilibrium path in
both elastic and plastic range are of paramounbitapce. Solutions for thin spherical shells
can be found in most of the standard elasticity plagticity textbooks (IMOSHENKO and
GOODIER, 1970; GIAKRABARTY, 1987). Elastic behavior of shells has been vdogety
investigated, mostly by means of the finite elemmaethod. Many authors like RBERLEIN,
WRIGGERS CIVALEK, GURSEShave done elastic-plastic calculations in shellsubing the
various theoretical and numerical approaches basedfinite element method, shear
deformation theory, discrete convolution technig8eHmiDT and WEICHERT, 1989; $v0 et
al.,1990; BERLEIN and WRIGGERS 1999; GvALEK and GQIRSES 2009). This paper is based
on the non-linear transition theory of elastic-ptashells. Here in this paper, the elastic-
plastic problem of rotating spherical shells basadthe different degree of compressibility
has been solved by using the concept of generadizash measures and transition theory. The
distribution of stresses and yielding in an elaptastic rotating shell has been calculated by
using the concept of generalized strain measuredstla generalized Hooke's law at the
critical points of the non-linear differential edua defining the equilibrium stage. The
transition theory of elastic-plastic of shells deot nuse the ad-hoc assumptions like
incompressibility, yield conditions those of Tres&on Mises and creep-strain laws like
those of Norton©ODQVIST (1964). This theory has been used to solve varmdastic-plastic
transition problems &H, 1963; HILSARKAR, 1981; GPTAand RTHAK, 2000). &TH (1966)
has defined the concept of generalized strain measu

A n-z no
e = [0 [1— 2ef] 7 def =1[1— (1 —2e)z, (=1,2,3) (1)

Sk

wheren is the measure;; is the almansi finite strain components.

The accurate calculation of radial and circumfaedrstresses is essential for efficient design
and long life of mechanical structures. In this gralastic-plastic stresses are determined by
using the asymptotic solution at critical pointsdamequired angular speed to start initial
yielding in the shell without using any semi-emgatiyield condition and other certain laws.
We analyze the non-linear transition problem ofthotating spherical shell by using the
generalized strain measures and Seth's transiti@ory for different values of the
compressibility. The effect of density variatiorrg@eter has been discussed numerically and
depicted graphically.

MATHEMATICAL MODEL

Consider aspherical shell of constant thicknes$ whie internal radiug and the
external radiu®. The shell is rotating with angular velocibtyabout an axis perpendicular to
its plane and passing through the center of thd sbethat the axial stress is zero. The
thickness of the shell is constant and is effettive a state of plane stress. The spherical
shell considered in the present study has no sinéssly. The inner surface of the spherical
shell is assumed to be fixed to a shatft.
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Figurel. Geometry of rotating spherical shell.

Formulation of the problem:

Due to the symmetry in the elastic properties, displacement is purely radial.
Therefore, we take the displacements in sphermaidinates &3, 0, ¢).

u=r(1-p),v=0,w=0wherg is function of r 5/x2 + y? + z2 (2

The finite strain components are given by Seth as

e =1 [1-(rB + B edo=efy=2(1—p2)

311‘46 = eé4¢ = ef(p =0 (3)
wherep’ = %

By using equation (3) in equation (1) , the geneeal components of the strain are given as

err= [1=(rB' + B)"] , ego= egp = = (1 — B™) (@)

n
erg = €pg = €pr = 0

The stress - strain relations for the isotropicenat are given by &OLNIKOFF (1946).
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whered andu are lame's constants ald=ey, is called first strain invariant.
By using equation (4) in equation (5), the corresjiog stresses are given as

A+2u
Trr [

— (' + B (1 - M)
Too = Tpp = [1— (rB’ + "] 22 (1 — ™) (6)
Trg = Top = Typ = 0

The equations of equilibrium are all satisfied fotating body except

d (Trr)
r
dr

+ T — Tog + pw?r? =0 (7)
We get the non-linear differential equation by gsaguation (6) in equation (7) as given

dP ncpa) r?

n+1P 1+Pn1
np" o P( ) Ty

=0

+Mc(1-A+P)") —nP{2(1—c)+ (1 +P)"}]

(8)
where ¢ denotes the compressibility of material gindn asc = 2u/A 4+ 2u , 1B’ =P

The transition points of from equation (8) ar® — 1land P - +o whereP —» +oo
corresponds to elastic-plastic transitions Bneb 1 corresponds to creep transitions. So, we
take into consideration onf - +oo.

SOLUTION THROUGH THE PRINCIPAL STRESS

In order to find the plastic stresses, the tramsitfunction is defined using the
principal stress as taken bgi®i (1963), THAKUR (2010, 2011), HAKUR et al. (2015, 2016) at
the transition poinP — +o0o. We define the transition function as

R=2To=2-Ela-0@+P)+ 2-0) 9

2u c

Taking the logarithmic differentiation of equati{®) with respect to r and using equation (8).

dlogR
dr y
nPB™"(2 —c)+ B"c(1—c) [1 —(1+P)"—2nP + npw : ]
- 2up (10)
r[(3 —20)—-B(1-c)@A+P)"+ (2 - c)]]

Now by taking the asymptotic value of equation (A0P — +oco and integrating, we have

R= A;r= (11)
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where 4 is a constant of integration, which can be deteetiiby the boundary conditions.
The boundary conditions are given as

T,, = 0 atr=aandl,,, =0 atr=>b

From equation (9) and equation (10), we get
Tog = £ Ayr° (12)
Use equation (12) in equation (7) and integratimg get as
pw?r? A

+
3 r

(13)

where A4, is a constant of integration, which can be deteealiby using boundary conditions.
Therefore, the value of the constamtg andd, are given as

_ pw?n(a®-b3)(1-c)
1= 6u (al—c—pi-c)

(14)

pwz (ac+2_bc+2)

3 (ac—l_bc—l)

A2=

(15)

By using the values of; andA, in the equations (12) and (13), we have

pw? (a®-b3(1-c) _
Too = 3 (al=c—pl-c) r¢ (16)

T . pwz (a3—b3) T-—C pwzrz pwz (ac+2_bc+2)
T T -

3 (al=¢-b1-¢) 3 3r (ac"1-pc-1)

(17)

Initial Yielding: From equation (16), we can observe tigtis maximum at r=a, that is the
internal surface of the shell. Therefore, the yredof spherical shell will start at the internal
surface given as

pw? (a3-p3)(1-0)
3 (al—c_bl—c)

| Toglr=a = a ¢ =Y(say) (18)

The angular speed required for initial yieldingjigen as

prbZ 3(a1—c_b1—(:) _
0 = ey b%?a~¢ (19)

Fully Plastic state: On increasing the speed of rotation, the yieldmthe shell will go on an

increase and the shell become more and more pfastsome value of the angular speed. To
attain fully plastic state, we will male->0 at the external surface r = b.

2 3—b3 .
| Toole= = 222 ) = v+ (say) (20)

The angular speed required for Fully plastic siatgven as
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2 _ pw?b? _ _. 5 (a-b)
0f === =305 (21)

Further we are introducing the non-dimensional conents as
R= r/b, Ro = a/bﬂ'r =Trr/Y y Op =T99/Y

Therefore, the transitional stresses and the angpked by using the equations (16), (17) and
(19) are as follow

Too _ Qf(Ro°-1)(1-c)

— 166 _ —c
Og = Y 3(R01_C—1) R (22)
_ T _ 9 (RP-1) ¢ o 1(ReTTP-1)
N [y R R+ (Roc™1-1) (23)
2 _ 3(R01_C_1) —-C
Qi - (Ro3—1)(1—c) [4) (24)
Fully Plastic state:
QF 2
09 =L (R, +R, +1) (25)
0% Ro(Ro+1)
0, = L|(R,® + R, + 1) — R? — 2] (26)
_ 3(Ro—1)
Y =G 27

These results obtained for transitional stressesthe angular speed for rotating spherical
shell is same as given byy&RmMA and S\HNI (2009).

DENSITY VARIABLE PARAMETER IN SHELL

Now we discuss the influence of density on thetiglaplastic stresses in an isotropic
thin rotating spherical shell. Consider the deneitgpherical shell varies along the radius in
the following form:

-m

= o)

wherep, is the constant density taken at r = b and m ésdénsity variable parameter in
rotating shell.

By introducing the density variable parameter in thaagtions (7), (12), (13), (14), (15), we
get the values of transitional stresses and angpked required for the initial yielding and for
the fully plastic state.

These expressions in the non - dimensional forngiaen as Initial Yielding:
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_ 0F(RAT-1)(1-0)

o G-m)(RyTc-1) R™¢ (28)
o = 2 ((1;131-_7:_—11)) R¢ — R*™™ 4 %('ER;_:)” (29)
0f = G R (30)
Fully Plastic state:

oo S ey
02 = —(3&;:’;)_550_‘1? (33)

For numerical calculations of the stresses andlangpeed based on the above formulas, the
following numerical values are taken as C=0, 0®5, 0.75 and m=0, 1, 2.

Tablel. Angular speed required for initial yieldiagd fully plastic state.

Percentageincreasein the
Density angular speed to become
variation fully plastic-state
parameter
(m) | Compressbility | @ | 02 P% = (,/9?/9? —1)
x100
0 1.6435| 1.71428 20.75
1 C=0 1.0957| 1.1428 20.73
2 0.547¢| 0.5714: 20.72
0 1.5582| 1.71428 31.65
0.5<R<1 1 C=0.25 1.0388| 1.1428 31.64
2 0.519¢| 0.5714. 31.€3
0 1.4197| 1.71428 45.55
1 C=0.5 0.9465| 1.1428 45.54
2 0.4737| 0.5714: 45.5:%

NUMERICAL ILLUSTRATION AND DISCUSSION

For calculating stresses and angular speed bas#dteabove analysis, the following
values have been taken= 0.5 (incompressible material)= 0.42857, 0.333 and 0.2 (com-
pressible materials). From Table 1, it has been seat the angular speed required for the
initial and fully plastic state is calculated witlifferent compressibility factors. It has been
observed that shells made of an incompressibleriaba{gke rubber) require higher angular
speed as compared to shells made of compressildzials (like plastics, copper) at the inner
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surface (i.e. r = a). It can also be observed thatcompressible material, the higher
percentage increase in angular speed is requiredtdam fully plastic state as compared to
rotating spherical shells made of the incompressibéterial. It is also observed that rotating
shells with density variation require lesser angslpeed to start yielding as compared to
shells without density variation. It means thatatiolg shell with variable density has a
tendency to fracture at the bore of the shell. Gilnee is produced from fig. 2, between the
angular speed required for initial yielding andioas radii ratioR, for the different values

of compressibility factor C and density variatioargmeter m. It has been observed that the
compressible materials require lesser angular spedstart yield as compared to
incompressible materials in the absence of denstjation parameter. Density parameter
decreases values of angular speed for incompressiblwell as compressible material.
Therefore, rotating spherical shells made of tlwemmpressible material is on the safer side of
the design as compared to rotating spherical shedlde of compressible material. Curves are
produced between stresses along the radii ratio Rb=for compressible material and
incompressible material (see figs. 3-6) and difiedensity parameter values. It has been seen
that circumferential stresses maximum at the iatesarface of the compressible material as
compared to the incompressible material of sphiesball. With the introduction density
parameter, circumferential as well as radial mestdbcreased at the internal surface of the
spherical shell.

: N =4-—C=0.25, m=0
1.5 MCzo_5o,m=o
g
5 C=0.75,m=0
D
T o1 =36=(C=0.25,m=2
E =3i=C=0.5,m=2
<
h ——— 70—C=0.75,m=2
0.5 e e —
0
0.1 0.2 0.3 0.4 0.5

Radii ratioRo=a/b

Figure2.Angular Speed required for initial yieldifog various radii ratio®, =a/ b in rotating shell
with the effect of variable density parameter< 0, 2).
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1 - - — 3
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P e e —_—
0 & e — e,
0.6 0.7 0.8 0.9 1
R=r/b for C=0.25

Figure3. Stresses distribution with respect toinadio R = r/b for C = 0.25.
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Figure4. Stress distribution with respect to raalio R = r/b for C = 0.5.
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Figure5. Stress distribution with respect to raadiio R = r/b for C = 0.75.
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1.2
e=@=m=0, or =fil=m=0,00 m=2, or ==m=2, 00

0.2

* == —_

o L \\_

0.6 0.7 0.8 0.9 1

R=r/b for fully plastic state

Figure6. Stress distribution with respect to raaliio R = r/b for C = 0.

Nomenclature
a,b - Inner and outer radii of the spherical shell [m],

w - Angular velocity '],
u,v,w - Displacement components, [m],
P - Density of material, ggm=],

C - Compressibility factor, [-],

Tj,&; - Stress and Strain rate tensegrh*s?],
Y - Yield stress, kgm*s?],
R=r/bRy=alb _pagj ratio, [,

2 _ 2K 2
QF = pow™ Y angular speed,
9 - Radial stress component(/Y), [-]

% - Circumferential stress componentsf/Y'), [-]



15

Refer ences:

[1] CHAKRABARTY, J. (1987)Theory of Plasticity. McGraw-Hill Book Coy., New York.

[2] CIVALEK, O., GURSES M. (2009): Free vibration analysis of rotating agliical shells
using discrete singular convolution techniglreernational Journal of Pressure Vessels
and Piping 86 (10): 677-683.

[3] EBERLEIN, R., WRIGGERS P. (1999): FE concepts for finite elastoplastiaiss and
isotropic stress response in shells: theoreticdlcamputational analysi€omput. Meth.
Appl. Mech. Eng. 171: 243-279.

[4] GupTA, S.K,,RATHAK, S. (2000): Creep Transition in a thin rotating DddcVariable
Density.Defence Science Journal50 (2): 147-153.

[5] HULSARKAR, S. (1981): Elastic Plastic Transitions in Tranmsedy Isotropic Shells under
uniform pressurdndian J. Pure Applied Math. 12 (4): 552-557.

[6] ODQVIST, F.K.G. (1964): On theories of creep rupture.Reiner, M. & Abir, D. (Eds.),
IUTAM Symp. Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics, Haifa,
Proc. Pergamon Press: 295-313.

[7] ScHMIDT, R., WEICHERT, D. (1989): A refined theory of elastic-plastic dbelt moderate
rotationsZAMM 69: 11-21.

[8] SETH, B.R. (1963): Elastic Plastic Transition in ShellsT&bes under pressuréAMM
43: pp. 345.

[9] SETH, B.R. (1966): Measure Concept in Mechanios.J. Non-linear Mech. 1: 35-40.

[10] SHAMBHARKAR, R. (2008): Vibration analysis of thin rotating awrical shell.Ph.D.
thesis, NIl T Rourkela.

[11] SHARMA, S.,SAHNI, M. (2009): Elastic-Plastic Transition of Transsally Isotropic Thin
Rotating DiscContemporary Engineering Sciences 2 (9): 433-440.

[12] SImO, J.C.,RIFAI, M.S.,Fox, D.D. (1990): On a stress resultant geometrioatigct shell
model. Part IV: Variable thickness shells with tigb-the-thickness stretchinGomp.
Meth. Appl. Mech. Eng. 81: 91-126.

[13] SOKOLNIKOFF, I.S. (1946):The Mathematical Theory of Elasticity. McGraw-Hill, New
York.

[14] TIMOSHENKO, S.P.,GOODIER, J.N. (1970):Theory of elasticity (3rd ed.). McGraw-Hill
Book Coy., New York.

[15] THAKUR, P. (2011): Elastic-plastic transition stressesratating cylinder by finite
deformation under steady-state temperatdiermal Science International Scientific
Journal 15(2): 537-543.

[16] THAKUR, P. (2010): Creep transition stresses in a thiatirgy disc with shaft by finite
deformation under steady state temperaflinermal Science 14 (2): 425-436.

[17] THAKUR, P.,SINGH, S.B.,SAWHNEY, S. (2015): Elastic—Plastic Infinitesimal Deformat
in a Solid Disk under Heat Effect by Using Seth dityelnt. J. Appl. Comput. Math. 3
(2): 621-633 DOI 10.1007/s40819-015-0116-9.



16

[18] THAKUR, P.,KAUR, J.,SINGH, S.B. (2016): Thermal Creep stresses and stré@s ra a
circular Disc with shaft having variable densiBngineering Computations 33(3): 698-
712 DOI 10.1108/EC-05-2015-0110.

[19] WOELKE, P.B. (2005): Computational model for elasto-ptasihd damage analysis of
plates and shell$.SU Doctoral Dissertations. 2945
http://digitalcommons.Isu.edu/gradschool_dissesteti2945 Accessed 15 April 2016.




