SPECTRAL ANALYSIS OF HEART RATE VARIABILITY IN ACROMEGALY

Nebojša Danilović¹, Vladimir Ristić¹, Vladimir Cvjetković¹, Vera Gal², Mirjana Platiša² and Zorica Nestorović²

¹ Department of Physics, Faculty of Science, 34000 Kragujevac, Serbia and Montenegro
² Faculty of Medicine, 11000 Beograd, Serbia and Montenegro

(Received March 01, 2005)

ABSTRACT. The aim of this paper is to determine by means of spectral analysis the day and night values of spectral components for patients which have acromagaly. Spectral analysis of heart rate variability has proved itself very useful in recognizing the autonomous disfunction in various heart and some other diseases. In our case spectral components are obtained by using "The Fast Fourier Transform". Results showed increasing of night values LF and HF components in spectrum, in relation to day values. Our results show how physical methods can be successfully applied in medical analysis.

1. INTRODUCTION

The method most commonly used for spectral analysis is based on the discrete Fourier transform, usually implemented on the computer as the Fast Fourier Transform (FFT) [1]. With the availability of new, digital, high-frequency, 24-hour, multichannel ECG recorders, heart rate variability has the potential to provide additional valuable insight into physiological and pathological conditions.

Frequency domain analyses contributed to the understanding of autonomous background of RR interval fluctuations in the heart rate record. Low - frequency (LF) and High - frequency (HF) spectral components may vary in relation to changes in autonomous modulations of heart period [7].
Acromegaly is a chronic and slowly developing disease in which clinically progressive disfigurements or disabilities may be unnoticed, and the diagnosis can be delayed. It is a severe systemic disease because the growth hormone excess comes impairment of cardiac and respiratory functions that contribute to the increased mortality [8].

Acromegalic patents are exposed to a doubled mortality rate, mostly of decanse cardiovascular diseases [9,10]. Excess of growth hormone is associated with several changes of cardiac structure and function [11].

The aim of this paper is to determine by means of spectral analysis, the day and night values of spectral components for patients which are sick of acromegaly.

2. ANALYSING SPECTRA OF HEART RATE VARIABILITY

Investigations were conducted on patients which are sick of acromegaly. Heart activity of patients was recorded by three-chanel holter (Del Mar, DM Scientific, Model 423). Electrocardiograms, recorded on magnetic tapes, were digitalized by means of commercial program Wavelab and analog – digital convertor, with sampling rate of 200 Hz. R-R intervals (time intervals between two successive heart beat) were determined by means of a Program set Origin. For analyses were used records of 256 succesive R-R intervals.

For statistical processing of data we used a program set SPSS.

By application of Fast Fourier Transform (FFT), to tahogram’s segments of 256 R-R intervals, and by using a Program set Origin, we obtained spectral components of low frequency (LF) of heart rate in the range (0,04-0,15) Hz and high frequency (HF) in the range (0,15-0,5) Hz.

<table>
<thead>
<tr>
<th>Name of spectral component</th>
<th>Numeric value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>394.61±35.41</td>
</tr>
<tr>
<td>HF</td>
<td>121.72±8.77</td>
</tr>
</tbody>
</table>

Table 1: Day values of spectral components

<table>
<thead>
<tr>
<th>Name of spectral component</th>
<th>Numeric value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>492.26±43.86</td>
</tr>
<tr>
<td>HF</td>
<td>413.44±20.08</td>
</tr>
</tbody>
</table>

Table 2: Night values of spectral components

Spectral analysis of heart rate variability showed itself as very useful in recognition of autonomous disfunction in various cardiac and some other deseases.

Advantages of spectral analysis of heart rate variability over to other quantitative methods in study of autonomous cardial controle, especially are emphasized by next facts: 1) analysis is noninvasive 2) there is the considerable simplicity of measurement procedure 3) data processing is very reliable.

The obtained results showed increasing of night values of LF and HF components in spectrum in relation to day values (Fig.1 and Fig. 2). We know that spectral LF and HF components may vary in accordance with autonomous modulation of heart rate: high frequency component (HF) is parasympatheticaly mediated, while the low frequency component is sympatheticaly / parasimpatheticaly mediated. In normal subjects during the
day there was a predominant low frequency component, while at night high frequency component predominated [7].

![Fig. 1. The day HRV spectra](image1)

![Fig. 2. The night HRV spectra](image2)

Our results may be useful for physicians in comprehending of same physiological processes and better dosing of medicaments.
3. CONCLUSION

Our goal was to determine by means of spectral analysis, which is par excel lance a physical method, the day and night values of spectral components for patients which are sick of acromegaly.

It has been noticed that frequency domain analyses contributed to the understanding of autonomous background of RR interval fluctuations in the heart rate record. Low - frequency (LF) and High - frequency (HF) spectral components may vary in relation to changes in autonomous modulations of heart period [7].

In our investigation we determined, by means of spectral analysis, the day and night values of spectral components for patients which are sick of acromegaly. Spectral components are obtained by using "Fast Fourier Transform". The obtained results showed increasing of night values of LF and HF components in spectrum, in relation to day values. This investigation may be useful for physicians in comprehending of some physiological processes and better dosing of medicaments. Also, our results show how physical methods can be successfully applied in medical analysis.

ACKNOWLEDGEMENTS

This work was supported in part by the Ministry of Science and Ecology, Republic of Serbia (Project 1470).

References