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ABSTRACT. In this paper, we present some new lower and upper bounds for the 
modified Randic index in terms of maximum, minimum degree, girth, algebraic 
connectivity, diameter and average distance. Also we obtained relations between this 
index with Harmonic and Atom-bond connectivity indices. Finally, as an application we 
computed this index for some classes of nano-structures and linear chains. 
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INTRODUCTION 
 

In this paper  is a simple connected graph, where  is the set 
vertex of , and  is the edge set of . There are many different kinds of chemical indices 
that some of them are distance based like Wiener index, some of them are based on degree 
like Randic index. This fact is emphasized in the recent survey [12] which contains uniform 
approach to the degree- based indices. 

The Randic index was proposed by Milan Randic in 1975. This topological index was 

named Branching index, later called Randic index, which defined as  

where  denote the degree of vertex . This index has been defined to measure the extent of 
branching of the carbon-atom skeleton of saturated hydrocarbons. Although Milan Randic 
showed that there is a good correlation between this index and physicochemical properties of 
alkanes such as boiling points, surface areas and energy levels [1, 3, 27]. There are many 
applications in organic chemistry, medicinal chemistry and pharmacology that this index 
became one of the most interesting topic in graph theory which 4 books are devoted [10, 18-
19, 23]. In 2011, Z.Dvorak proposed a modified of Randic index, defined as 

, that is more tractable from computational point of view. It is 

much easier to follow during graph modifications than Randic index see [5] for more details. 
In [2], the authors showed that for every graph with n vertices, R´(G) is at least 1 no more 
than  and these bounds attained by stars and regular graph. Although they determined graphs 
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with minimal and maximal value of R´(G) among all trees and unicylic graphs, in [4], the 

authors showed that for all connected graph  the inequality  holds 

where  is the minimum eccentricity among all vertices of  and the eccentricity of the 

vertex  is the maximum distance from to any vertex. The maximum and minimim degree 
of a vertex in  denoted by ∆(G) and δ(G), respectively. 

The Laplacian matrix of G is defined as , where  is the diagonal 
matrix of its vertex degree and  is the adjacency matrix. Among all eigenvalues of the 
Laplacian matrix of G, one of the most popular is the second smallest, which was called the 
algebraic connectivity of a graph by fiedler [9 ] in 1973, and denoted by . In [22], the 
authors get relation between Randic index and algebraic connectivity. The girth of a graph G, 
denoted by  is the minimum length of its cycles. In [21] the authors computed upper 

bound of Randic index with girth . Let  be the average distance of G that defined as 

 such that  is the Wiener index defined as the sum of the lengths of the 

shortest path between all pairs of vertices and diameter of  is the maximum distance over all 

pairs of vertices  and  of  denoted by . In [30], the authors obtained relation 
between Randic index and diameter of a graph. 

The edge cut of  is a group of edges whose total removal renders the graph 
disconnected. The edge connectivity  is the size of a smallest edge cut. In this paper, we 
obtain a new bounds for the modified Randic index in terms of girth, diameter and algebraic 
connectivity. In continue, we establish some relation between this index and harmonic index 

and ABC index. The harmonic index of graph G is defined as . The 

atom–bond connectivity index of a nontrivial graph G, denoted by , is defined as 

 . For more information about harmonic and ABC index we 

refer the reader to see [7,11,26,29]. 
 
 

MAIN RESULTS 
 

  The aim of this section is to determine some new bounds for  in terms of girth, 
diameter and algebraic connectivity minimum and maximum degree. 
 
Theorem 2.1: Let  be a connected triangle-free graph with  vertices and  edges. 
Then we have: 

 
with equality if and only if  is an (n+1)-vetrex star . 

Proof: Let  be an edge in . Since  is triangle-free, we have  . Therefore 

regarding the definition of , we have  . Furthermore, If  is the -

vertex star  , then =  . 

Conversely, we assume that  but  is not isomorphic to ,  then there must 

existan edge  such that , implying that  , a contradiction. This 

completes the proof. 
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Theorem 2.2: Let  be a 2-edge connected graph with  vertices and  edges then  

 
with equality if and only if  is an -vertex cycle . 

Proof: Let  be an edge in . Since  is 2-edge connected, we have  and . 

So we have  with equality if and only if  for any vertex  in , that is 

. 
Note that a 2-connected graph is necessarily a 2-edge connected graph. By above theorem we 
have: 
Corollary 2.3: Let  be a 2-connected graph with  vertices and  edges then we have 

, 

With equality if and only if  is an -vertex cycle . 

Let  be a unicyclic graph obtained from star  by joining two pendant vertices of 

 by a new edge. (Fig. 1) 
 

        
Fig. 1. The graph  

 
Theorem 2.4 : Let G be a connected graph on  vertices and girth with then the 
following inequalities hold: 

  

The equality holds if G . 
Proof: In [5], the authors proved that 

 .      (1) 

It is easy to see that  contains at least one cycle since minimum degree δ is at least 2, so the 
girth of  is at least 3, this implies the inequality. Therefore the equalities hold if G , so 
the proof is now completed. 
 
Lemma 2.5: Let  be a graph on  vertices with the algebraic connectivity we have: 

 , 

where λ denotes the edge connectivity of . 
Proof: see [9] for more details. 
 
Theorem 2.6: Let  be a graph on  vertices and edge connectivity λ  such that , 
we get the following inequality: 

 
and if  then we have: 

). 
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Proof: Due to the above Lemma, if the edge connectivity  we have ) 

and by using inequality (1) we can obtain: 
 

 
To prove the second part, it is enough to apply lemma 2.5. 
 
Theorem 2.7: Fix a positive integer n. Among all trees on  vertices and maximum degree ∆, 

the maximum value of algebraic connectivity equals to  . 
Proof: See [28 ]. 
 

Theorem 2.8: Among all trees, the maximum value of modified Randic index equals to . 

Proof: See [2]. 
 

Theorem 2.9: Let T be a tree with  vertices and algebraic connectivity , the following 
ineqaulity holds: 

 
 ). 

 
Proof: Due to Theorem 2.7and 2.8, we have: 

  ,  , 

so we have: 

  
) 

 
Lemma 2.10 : Let  be a connected graph with  vertices and minimum degree δ  Then it 
follows that 

. 
Proof: see [6] for more details. 
 
Theorem 2.11: Let G be a connected gaph with  verices and minimum degree  Then  
we get the following inequality: 

 
Proof: By the Inequality (1) and the above Lemma we have: 
 

 
. 

Lemma 2.12: If  is a graph with  vertices and minimum degree , then we have: 

 
Proof: See [20] for more details. 
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Theorem 2.13: Let  be a connected graph with  vertices and minimum degree  then it 
follows that 

 
Proof: By inequality (1) and the above Lemma we have  

 
The proof is now complete. 
Now, we obtain relations between the modified Randic index, Harmonic and ABC indices. 
 
Theorem 2.14: let  be a nontrivial connected graph with  vertices and  edges then we 
have 

 

Proof: Let  be an edge in . Since (  , we have . 

So clearly we obtain: 

 
 
Theorem 2.15: Let  be a nontrivial connected graph on  vertices and , then we 
have: 

 
with equality if and only if . 

Proof: Let = .It is obvious that  is a convex function. By Jensen’s inequality, for 

each edge , we have  

 

with equality if and only if . Since  we have  

 

  

thus we have  

 +  = . 

The equality holds in the above inequality if and only if . 
 
 

Computation of the modified Randic index of TUZC6(p,q) nanotubes: 
 

A carbon nanotube is forming from a graphite sheet that is rolled up so that it has a 
zigzag edge. In this paper, we computed the modified Randic index for some families of 
polyhex nanotubes, armchair, Phenylenic Nanotorus, Polycyclic Aromatic Hydrocarbons and 
polyomino chain (Figs. 2-8).  
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By considering the lattice of TUZC6 [p,q], we denote the number of hexagon in the 
first row by p and the number of rows by q. In each row, there are 2p vertices and hence the 
number of vertices in this nanotube equals to 2pq. In [13] the authors obtained the hyper 
Wiener and Schultz indices of TUZC6 [p,q] nanotube, in [14] the authors computed GA index 
for this nanotube and in [8], the author computed some connectivity index and Zagreb index 
of nanotube. Now in this section, we compute the modified index of TUZC6 [p,q].  
 

 
 

Fig. 2. The 2-Dimensional Lattice of TUZC6[7,6]  
 

Set , since in the graph of nanotube TUZC6(p,q), all 

of edges  are in  or , we need to obtain the number of  and . 

Lemma 3.1: The number of  equals to 4p and the number of  equals to 3pq-5p. 
Proof: Consider the TUZC6[p,q] nanotube. At the first and last rows, there exist edges that 

every edge in these rows belong to , hence the number of  equals to 4p. At the other 

rows there exist p edges that belong to  and the number of these edges are q-1, 2p edges 

that every edges belong to  and the number of these edges are q-2, hence the number of 

 equals to 3pq-5p.  

Theorem 3.2 : The modified Randic index of TUZC6[p,q] equals to . 

Proof: By using the modified Randic index formula and the number of edges with their 
degrees we have: 

 
. 

Now, we compute the modified Randic index of armchair TUAC6[p,q] similar to previous 
section. The number of vertices in this armcheir equals to 2pq. The armchair’s edges are in 3 
types. The yellow edges belong to , the red edges belong to  and the other edges belong 

to . The number of ,  and  are equal to p, 2p and 3pq-4p, respectively.  

q

p

q

q-1

p
p-1`

 
Fig. 3. The 2-Dimensional Lattice of TUAC6[p,q] 



85 
 

 
Theorem 3.3: The modified Randic index of TUAC6[p,q] equals to . 

Proof: Like the previous theorem we have: 

 

                                            = +  =  

The next goal of this section is a computing a closed formula of the modified Randic index of 
TUC4C8[p,q] nanotube. In the structure of this nanotube there are pq horizontal regular squar-
octagone lattice with 8pq+2p vertices and 12pq+p edges (Fig. 4). For more results about this 
nanotube see [15-17, 24]. 

 
 

Fig. 4. 2-Dimensional Lattice of TUC4C8[p,q] nanotube, with p=4 and q=3 
 

Theorem 3.4: For , the modified Randic index of TUC4C8[p,q] equals to . 

Proof: Consider the Lattice of TUC4C8[p,q] nanotube. In this nanotube we have three types of 
edges such that belong to ,  and  that are shown by red, blue and black colors such 

that   | and 
  . Thus we have 

 

   
In continue, we obtain R’(G) of a physico chemical structure of Phenylenic Nanotorus. This 
nano structure is V-Phenylenic Nanotorus VPHY[p,q]. The structure of this nanotorus in 
terms of several C4C6C8 net that composed of four and six membered rings such that every 
square is adjacent to two hexagones (Fig. 5).  

 

 
 

Fig. 5. The 2-Dimensional Lattice of VPHY[4,3] 
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Theorem 3.5: For , the modified Randic index of V-Phenylenic Nanotori VPHY[p,q] 
equals to . 

Proof: Due to the general Figure of V-Phenylenic Nanotori VPHY[p,q], this nanotori has 6pq 
vertices, 9pq edges and all edges belong to f3,3 , this implies that 

 . 

At the next goal, we calculate the modified Randic index of hydrocarbon structures Polycyclic 
Aromatic Hydrocarbons (PAHn). PAHn are a complex group of chemicals containing two or 
more aromatic rings. PAHns are created when products like coal, oil, gas and garbage are 
burned but the burning process is not complete. The first member is Benzene (PAH1) with six 
carbon and six hydrogen atoms and the second member is coronene (PAH2) with 24 carbon 
and 12 hydrogen atoms (Fig. 6). By the Figure of the polycyclic aromatic hydrocarbon, it is 
easy to see that the general representation of has PAHn 6n2 carbon and 6n hydrogen atoms.  
 

 
Fig. 6. The first and second member of polycyclic aromatic hydrocarbon PAHn 

 
Theorem 3.6: The modified Randic index of  equals to . 

Proof: Let be the general representation of polycyclic aromatic hydrocarbon. The edge 

set of this graph can be dividing to two partitions, these partitions belong to  , and 
show that by blue and black color, respectively. All Carbon atoms have degree three and 
Hydrogen atoms have degree one, so we have | and |  , so we have: 

 = . 

 
 

The modified Randic index of polyomino chain: 
 

A polyomino system is a finite 2-connected plane graph such that each interior face is 
surrounded by a regular square of length one. A polyomino chain is a polyomino system, in 
which the joining of the centers of its adjacent regular forms a path  where  is the 

center of the i-th square. Let  be the set of polyomino chains with n squares, the subgraph 
of  that induced by the vertices with degree 3 and n-2 squares, called a linear chain and 
denoted by (Fig. 7). The subgraph of  induced by the vertices with degree bigger than 2 
be a path with n-1 edges, called a zig-zag chain and denoted by  (Fig. 8). In [31] the authors 
obtained Randic index of this graph. 

A kink of a polyomino chain is any branched or angularly connected squares. A 
segment S of a polyomino chain is a maximal linear chain in the polyomino chains that 
include the kinks at its end. The number of squares in a segment denoted by  

A polyomino chains consist a sequence of segments ,…, , , with 

where 

+… =  and n denote the number of squares of polyomino chain. 



87 
 
 
 

...1 2 n
 

 
Fig. 7. The Linear chain 
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Fig. 8. The Zig-Zag chain 

 
In the following, the aim is to calculate the Randic index of polyomino chains. 
 
Theorem 4.1: Let  be the polyomino chains then we have 

R’⟶R´( ) =     ,     R’⟶R´ ( )=  

 

Proof: For  it is trivial, we assume that . By the general Figure of , the 

number of  equals to 2, the number of  equals to 4 and the number of  equals to 
. By the definition of modified Randic index, we have 

 

 = . 

The edge set of  with n squares can be dividing to 5 partitions, these partitions belong to  

, , ,  and . Thus we have 

= 1+  +  +  +  =   

 

Theorem 4.2: Let  be a polyomino chain with  squares and  segments, such 

that Then we have 

=  

Proof: For  it is trivial, we assume that . By considering the general Figure of 

, we have  

|   
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So we have 

 +  +  +  = . 

In following, we assume that  such that . 
 

Theorem 4.3: Let  be a polyomino chain with  squares and  
segments, such that Then  

=  

Proof: For it is trivial. Therefore, we assume that . By considering the structure 

of  we have |  

and .  
Thus we have: 

 +  +  +  =  

 
 

CONCLUSIONS 
 

  In this paper we achieved the lower and upper bounds for the modified Randic index in 
terms of girth, diameter and algebraic connectivity. Then we obtained a relation between this 
index with Harmonic and ABC indices. At the end of this paper we computed this index for 
some families of polyhex nanotubes TUZC6[p,q], TUAC6[p,q], TUC4C8[p,q], VPHY[p,q] 
nanotorus, Polycyclic Aromatic Hydrocarbons and polyomino chains for the first time. 
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