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ABSTRACT. Thecharacteristic polynomial corresponding to the eeljcy matrix of
a graph is obtained by the Faddeev-Leverrier algori Subsequently, an improved
numerical scheme, based on the Newton-Raphsonithlgorand the Adomian
decomposition method, is applied to calculate thergy of the graph (the HMO
total m-electron energy of a conjugated molecule). In @alli a nonlinear
convergence accelerator, known as the Shanks oramsfs employed to speed-up
the calculation process. The proposed scheme eptuially easy, straightforward,
and shown to be superior to the classic Newton-Baphalgorithm in terms of

computational volume.
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Introduction

The energy of a graph is an eigenvalue-based gnajhiant that attracted much attention in the
contemporary mathematical and mathematico-chentiigahture [1]. Its definition originates
from an important quantity in the Hiickel molecubabital theory conjugated molecules, namely

the totaln-electron energy, [2,3]. For a molecule withn=2k atoms, it can be shown that

E,= 22:(:14 where A ,i =1.... k, denote the toj eigenvalues of the adjacency matrix of the

underlying molecular graph of the molecule [2,3br Fnost (but not all) chemically relevant
graphs, the equalit¥,, :ZMi |holds. Motivated by this, one of the present awglaamceived
i=1

theenergy of any graptG, defined as [4]

E(G) :ZM' . (1)

Details of the theory of graph energy, as wellmgx@haustive list of references, can be found in
the book [1].

As far as the numerical calculation of graph enesgconcerned, the common practice is
to use formula (1) and determine the graph eigemgby diagonalizing the adjacency matrix of
the underlying (molecular) graph. In this paper, describe an alternative approach for

achieving this goal, that requires the calculabbthe characteristic polynomial.

By ¢(x) or ¢(G,x)we denote the characteristic polynomial of the fyi@plt is defined
in the standard way ag(x) =det(xI - A), whereA is the adjacency matrix @&, andl the unit
matrix of appropriate order. Then the graph eigkresmA,4,,...,A, are the solutions of the
equationg(x) =0.

Although the calculation of graph energy by caltintp ¢(x) and then solvingp(x) =0

appears to be unhandy from a practical point ofvyig has a number of methodological
advantages. Namely, as it is well understood [2,3h& characteristic polynomial (or more
precisely: the coefficients of the characteristiclypomial) contains important and useful
information on the structure of (molecular) grapRsirsuing a matrix-diagonalization-based
calculation of graph energy, this information isngetely obscured.

The objective of this paper is to introduce a hig#ficient combined method to evaluate
all the eigenvalues of the adjacency matrix of asabered graph and to determine its energy

through the definition given by Eq. (1). As it wille demonstrated, the proposed technique
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features simplicity, considerable degree of acoyramd computational speed due to the
synergistic effect of combining the classic NewRaphson algorithm with the Adomian

decomposition method.

The Adomian decomposition method

Assuming the reader is familiar with the Newton-Rsqgn algorithm, we immediately
jump to the basics of the Adomian decompositionhoet
In order to illustrate the Adomian decompositiontimoel (ADM), let us consider the
following general functional equation:
u-N(u)=f, (2)
whereN is a nonlinear operator which maps a Banach spdoéo itself,f is a given function

and u designates an unknown function. The ADM decompases an infinite summation,
u=>" u andNasN(u)=>"" A, whereA are called the Adomian polynomials and can be

obtained by the following formula [8]:

_ 1d " gk
A =AUy Uy,...,u) ﬁﬁN(Z AJ

k=0

3)

A=0
By letting u, = f , the ADM generates other components of the soluwia u,, = A; 120,

recursively. The convergence and reliability ostimethod have been approved by prior works
(e.g. see [9,10]).

Elsewhere [11], Fatoorehchi and Abolghasemi haveisdd a completely different
algorithm to generate the Adomian polynomials of desired nonlinear operators. It is mainly
based on string functions and symbolic programmiByg. setting the symbolic variable

NON =u, +u, +u,+--+u, whennis sufficiently large, the following function in MPALAB can

return the Adomian polynomial components of a nwedr operator acting up®ON.

Program AdomPoly: An alternative code for calculaton of the Adomian polynomials
function sol=AdomPoly(expression,nth)
Ch=char(expand(expression));
s=strread(Ch, '%s', 'delimiter’, '+");
for i=1:length(s)
t=strread(char(s(i)), '%s', 'delimiter’, *()expdkinh’);
t=strrep(t,"”~,"™*");
if length(t)~=2
p=str2num(char(t));
sumindex=sum(p)-p(1);
else
sumindex=str2num(char(t));
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end
list(i)=sumindex;
end
A=";
for j=1:length(list)
if nth==list(j)
A=strcat(A,s(j),'+";
end
end

N=length(char(A))-1;
F=strcat ('%',num2str(N),'c%n";
sol=sscanf(char(A),F);

For more background on the ADM, see the referefica48].

The Shanks transform

The Shanks transform which is due to Daniel Shafi&l7-1996), is a nonlinear

transform that effectively coverts a slowly convegg sequence to a rapidly converging

sequence [19]. The Shanks transformaﬁhrﬁun) of the sequencH, is defined as

Un+1U n-1 _Ur?

S‘](U”) ) Un+1_2Un +Un—1 .

(4)

Further speed-up may be achieved by successivemgpitation of the Shanks transformation,
that is Sh* (U,,) = sh(Sn(U,)), sn*(U,) = sh(sh(sn(U,))). etc. For more on application of the

Shanks transform one is referred to [20].

The improved Newton-Raphson algorithm

In [21], Abbasbandy put forward a new family of iraped numerical equation solvers
by the help of the Adomian decomposition methodcdBese of the space limitation, we do not
review his work here and suffice to build our owmitar equation solver of higher order of

accuracy.

Suppose that we are after the solution of a noatiequation,

f(x)=0, (5)
with r being one of its roots. A fourth-order Taylor's exgion neax gives
f h)y=f hf ' hzf" h3f"' h4fiV o(m 6
(x=h)=f(x)=hf"(x) + = F"(x) = £"(x) + 2, 1" () +O(n°).  (8)
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We are looking for ah such thatf (r) = f (x—h) =0. Therefore,

, h? ., he .. h* ..,
f(x-h)=0= f (x)-hf (x)+3f (X)_Ef (x)+?4f (x). (@)

Hence,

_f(x)  hf(x) _nf"(x) h* fY(x)

= — — — : 8
2T e (0 24 T (W) ®)

The foregoing equation is nonlinear with respedt.tim other words,
h=t 09 = 0 e 100 TR )

f'(x) f'(x) 2f'(x) 6f'(x) 24f'(x)

By applying the ADM to Eq. (3), we fintd = Zzoh where,
_ (¥
= f(x)’ (10)

h.,=A, i=012,..

and A are the Adomian polynomials decomposing the nealirpart of Eq. (9).

In this way, a truncated solution forcan be obtained ds= zzoh . Therefore, an iterative

relation for the a solution to Eq. (5) is found as,

m

X =%~

=0 Ix=x,
Now, we letm=2 to develop our relatively accurate solver as,

144170 (,) + 7287 () 117 () £ (%) = 247 (x,) £°(x,) £%(x,)
+617(x,) £4(x,) £7(x,)+ 720 "%(x,) £4(x,) £ *(x,) _ (11)
=607 " (x,) £"(x,) £2(x,) (%) + 18" (x,) £"(x,) £%(x,) £*(x,)
+12872(x,) £72(%,) £4(0%,) = 767 (%) £ (x,) £(x,) £°(x,)

_+fiv2(xn)f6(xn)

As noted above, the Shanks transform can optioballgpplied in order to further improve the

_,_ 1 f(x)
X = 144 °(x,)

rate of convergence for the foregoing root:

_ XX T %
S = . 12
b3) X = 2%, + X4 (12)

Computation of graph energy

Let G be a simple graph witih vertices andm edges. Additionally, suppose thatis the

adjacency matrix 0. Consequently, there exists a characteristic otyal w(x) of the form
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P(X) =ax" +ax"t +ax" i+ +a _x+a,. (13)

The Faddeev-Leverrier scheme has maintained a dablen reputation in providing the
characteristic polynomial of matrices among mangls [22,23]. Quite some time ago, this was
recognized in theoretical chemistry, where the wettvas presented and exemplified in due
detail [24-28]. As a curiosity, we note that inlitya[24,25] the method was erroneously named
by Frame, and only in the paper [25] its true mathigcal origin was established.

Assuming thatA is ann-by-n matrix, the Faddeev—Leverrier algorithm consistshef
following steps:

A=A
: (14)
N, =N(N\ +al); 1<i<n

g =1

_trace(A,). L<i<n (15)

[
Through recursion, Egs. (14) and (15) provide all thel coefficients of Eq. (13), or in other

words the characteristic polynomial is found coneatly.

It is obvious that the roots Otp(x):o give then eigenvalues of the matrig, i.e.,
A, ..., A,. Since A is a symmetric matrix with zero trace, it easilglldws that all the
eigenvalues are real-valued and,

A+A,+-+A =0 (16)

Thus, to evaluate the energy®fwe only need to compute-1 roots of the equatiom(x) =0
through Eq. (11), optionally equipped with Eq. (1&)d find then-th root by virtue of Eq. (16).
Afterwards, the only easy task is to calcul&gG) via the definitional Eq. (1).

Numerical examples

For the sake of exemplification, the energies ok figraphs with different structures are
calculated through the proposed technique as wellby the classical Newton—Raphson
algorithm. Details are given in Table 1. As theutessin Table 1 indicate, the improved Newton—
Raphson algorithm (I.N.R.) is much more computalbynefficient than the classic Newton—
Raphson algorithm (N.R.). Moreover, the use ofShanks transform speeds up the convergence
to the sought-after root for both the N.R. andItheR. algorithms.
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CPU timé [seconds]
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567.0015 0.20120

N
w N
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o )

N
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2857.2156  0.9705

8.9879184148 1.1254x168 28

(62}
w N =
%
o N

IS
a

2154.6985 0.4210

Table 1. Results of five numerical examples obimgthe N.R. and the I.N.R. algorithms.
The simulations have been performed by a PC wil6& GHz processor and 2.00 GB of
RAM:; ?For the same value of the initial guess and adalee of 15°.



76

Conclusion

A new combined method for the calculation of thergy of a graph was presented. The
method incorporates the Faddeev—Leverrier algoritine Newton—Raphson algorithm and the
Adomian decomposition algorithm, forming a fast awturate tool for evaluation of all the
eigenvalues of the adjacency matrix of the targaply. Based on the comparisons, it was shown
that the proposed scheme is superior to the clagéswton—Raphson algorithm, yielding the
eigenvalues significantly faster. This advantagelldide of interest from a computational point

of view, especially for graphs with larger numbefsertices and edges.
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