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ABSTRACT.  The characteristic polynomial corresponding to the adjacency matrix of 

a graph is obtained by the Faddeev-Leverrier algorithm. Subsequently, an improved 

numerical scheme, based on the Newton-Raphson algorithm and the Adomian 

decomposition method, is applied to calculate the energy of the graph (the HMO 

total π-electron energy of a conjugated molecule). In addition, a nonlinear 

convergence accelerator, known as the Shanks transform, is employed to speed-up 

the calculation process. The proposed scheme is conceptually easy, straightforward, 

and shown to be superior to the classic Newton-Raphson algorithm in terms of 

computational volume.  
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Introduction 

The energy of a graph is an eigenvalue-based graph invariant that attracted much attention in the 

contemporary mathematical and mathematico-chemical literature [1]. Its definition originates 

from an important quantity in the Hückel molecular orbital theory conjugated molecules, namely 

the total π-electron energy,Eπ [2,3]. For a molecule with 2n k=  atoms, it can be shown that 
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= ∑  where , 1, ,i i kλ = K , denote the top k eigenvalues of the adjacency matrix of the 

underlying molecular graph of the molecule [2,3]. For most (but not all) chemically relevant 

graphs, the equality 
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=∑ holds. Motivated by this, one of the present authors conceived 

the energy of any graph G, defined as [4] 

  ( )
1

n

i
i

E G λ
=

=∑  .      (1) 

Details of the theory of graph energy, as well as an exhaustive list of references, can be found in 

the book [1]. 

 As far as the numerical calculation of graph energy is concerned, the common practice is 

to use formula (1) and determine the graph eigenvalues by diagonalizing the adjacency matrix of 

the underlying (molecular) graph. In this paper, we describe an alternative approach for 

achieving this goal, that requires the calculation of the characteristic polynomial.    

By ( )xφ  or ( ),G xφ we denote the characteristic polynomial of the graph G. It is defined 

in the standard way as ( ) ( )detx xI Aφ = − , where A is the adjacency matrix of G, and I the unit 

matrix of appropriate order. Then the graph eigenvalues 1 2, , , nλ λ λK  are the solutions of the 

equation ( ) 0xφ = . 

Although the calculation of graph energy by calculating ( )xφ and then solving ( ) 0xφ =  

appears to be unhandy from a practical point of view, it has a number of methodological 

advantages. Namely, as it is well understood [2,5-7], the characteristic polynomial (or more 

precisely: the coefficients of the characteristic polynomial) contains important and useful 

information on the structure of (molecular) graphs. Pursuing a matrix-diagonalization-based 

calculation of graph energy, this information is completely obscured. 

 The objective of this paper is to introduce a highly efficient combined method to evaluate 

all the eigenvalues of the adjacency matrix of a considered graph and to determine its energy 

through the definition given by Eq. (1). As it will be demonstrated, the proposed technique 
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features simplicity, considerable degree of accuracy, and computational speed due to the 

synergistic effect of combining the classic Newton-Raphson algorithm with the Adomian 

decomposition method. 

 

The Adomian decomposition method 

Assuming the reader is familiar with the Newton-Raphson algorithm, we immediately 

jump to the basics of the Adomian decomposition method. 

In order to illustrate the Adomian decomposition method (ADM), let us consider the 

following general functional equation: 

( )u N u f− = ,       (2) 

where N is a nonlinear operator which maps a Banach space E into itself, f  is a given function 

and u designates an unknown function. The ADM decomposes u as an infinite summation, 
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=∑ , where iA  are called the Adomian polynomials and can be 

obtained by the following formula [8]: 
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By letting 0u f= , the ADM generates other components of the solution via 1 ; 0i iu A i+ = ≥ , 

recursively. The convergence and reliability of this method have been approved by prior works 

(e.g. see [9,10]). 

Elsewhere [11], Fatoorehchi and Abolghasemi have devised a completely different 

algorithm to generate the Adomian polynomials of any desired nonlinear operators. It is mainly 

based on string functions and symbolic programming. By setting the symbolic variable 

0 1 2 nNON u u u u= + + + +L  when n is sufficiently large, the following function in MATLAB can 

return the Adomian polynomial components of a nonlinear operator acting upon NON. 

 

Program AdomPoly: An alternative code for calculation of the Adomian polynomials 
function sol=AdomPoly(expression,nth)  
Ch=char(expand(expression)); 
s=strread(Ch, '%s', 'delimiter', '+'); 
for i=1:length(s) 
t=strread(char(s(i)), '%s', 'delimiter', '*()expUlogsinh'); 
t=strrep(t,'^','*'); 
    if length(t)~=2   
p=str2num(char(t)); 
sumindex=sum(p)-p(1); 
    else 
sumindex=str2num(char(t)); 
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    end 
list(i)=sumindex; 
end 
A=''; 
for j=1:length(list) 
    if nth==list(j) 
A=strcat(A,s(j),'+'); 
    end 
end     
N=length(char(A))-1; 
F=strcat ('%',num2str(N),'c%n'); 
sol=sscanf(char(A),F); 
 

For more background on the ADM, see the references [12-18]. 

 

The Shanks transform 

The Shanks transform which is due to Daniel Shanks (1917-1996), is a nonlinear 

transform that effectively coverts a slowly converging sequence to a rapidly converging 

sequence [19]. The Shanks transformation ( )nSh U  of the sequence nU  is defined as 

( )
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U U U
Sh U

U U U
+ −

+ −

−=
− +

.                                                  (4) 

Further speed-up may be achieved by successive implementation of the Shanks transformation, 

that is ( ) ( )( )2
n nSh U Sh Sh U= , ( ) ( )( )( )3

n nSh U Sh Sh Sh U= , etc. For more on application of the 

Shanks transform one is referred to [20]. 

 

The improved Newton–Raphson algorithm 

In [21], Abbasbandy put forward a new family of improved numerical equation solvers 

by the help of the Adomian decomposition method. Because of the space limitation, we do not 

review his work here and suffice to build our own similar equation solver of higher order of 

accuracy. 

 

Suppose that we are after the solution of a nonlinear equation, 

( ) 0f x = ,       (5) 

with r being one of its roots. A fourth-order Taylor’s expansion near x gives 

( ) ( ) ( ) ( ) ( ) ( )
2 3 4

5( ) O
2 6 24

ivh h h
f x h f x hf x f x f x f x h′ ′′ ′′′− = − + − + + . (6) 
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We are looking for an h such that ( )( ) 0f r f x h= − = .  Therefore, 

( ) ( ) ( ) ( ) ( )
2 3 4

( ) 0
2 6 24

ivh h h
f x h f x hf x f x f x f x′ ′′ ′′′− = ≈ − + − + . (7) 

Hence, 
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The foregoing equation is nonlinear with respect to h. In other words, 
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By applying the ADM to Eq. (3), we find 
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and iA  are the Adomian polynomials decomposing the nonlinear part of Eq. (9). 

In this way, a truncated solution for h can be obtained as 
0

m
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=
≈∑ . Therefore, an iterative 

relation for the a solution to Eq. (5) is found as,  
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Now, we let 2m =  to develop our relatively accurate solver as, 
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As noted above, the Shanks transform can optionally be applied in order to further improve the 

rate of convergence for the foregoing root: 
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 .     (12) 

 

Computation of graph energy 

Let G be a simple graph with n vertices and m edges. Additionally, suppose that A is the 

adjacency matrix of G. Consequently, there exists a characteristic polynomial ( )xφ  of the form 
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( ) 1 2
0 1 2 1

n n n
n nx a x a x a x a x aφ − −

−= + + + + +L .  (13) 

The Faddeev–Leverrier scheme has maintained a dependable reputation in providing the 

characteristic polynomial of matrices among many rivals [22,23]. Quite some time ago, this was 

recognized in theoretical chemistry, where the method was presented and exemplified in due 

detail [24-28]. As a curiosity, we note that initially [24,25] the method was erroneously named 

by Frame, and only in the paper [25] its true mathematical origin was established.  

Assuming that Λ  is an n-by-n matrix, the Faddeev–Leverrier algorithm consists of the 

following steps: 

( )
1

1 ; 1i i ia I i n+

Λ = Λ
Λ = Λ Λ + ≤ ≤

    (14) 

( )
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    (15) 

Through recursion, Eqs. (14) and (15) provide all the 1n +  coefficients of Eq. (13), or in other 

words the characteristic polynomial is found conveniently. 

It is obvious that the roots of ( ) 0xφ =  give the n eigenvalues of the matrix A, i.e., 

1, , nλ λK . Since A is a symmetric matrix with zero trace, it easily follows that all the 

eigenvalues are real-valued and, 

1 2 0nλ λ λ+ + + =L       (16) 

Thus, to evaluate the energy of G, we only need to compute 1n −  roots of the equation ( ) 0xφ =  

through Eq. (11), optionally equipped with Eq. (12), and find the n-th root by virtue of Eq. (16). 

Afterwards, the only easy task is to calculate ( )E G  via the definitional Eq. (1). 

 

Numerical examples 

For the sake of exemplification, the energies of five graphs with different structures are 

calculated through the proposed technique as well as by the classical Newton–Raphson 

algorithm. Details are given in Table 1. As the results in Table 1 indicate, the improved Newton–

Raphson algorithm (I.N.R.) is much more computationally efficient than the classic Newton–

Raphson algorithm (N.R.). Moreover, the use of the Shanks transform speeds up the convergence 

to the sought-after root for both the N.R. and the I.N.R. algorithms. 
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Example Graph ( )E G 

CPU time1 [seconds] 
Iteration Number2 

(N.R.) (I.N.R.) 
N.R. + 
Shanks 

I.N.R. + 
Shanks 

(N.R.) (I.N.R.) 

1 

 

4.9623886081 

0.6050 <10-4 

60 9 

0.4011 <10-4 

2 

 

5.8416192529 

28.3440 <10-4 

38729974 15 

18.2531 <10-4 

3 

 

8.1388052268 

138.7340 <10-4 

136932483 16 

98.2487 <10-4 

4 

 

9.1152945826 

  846.9220 0.7500 

985650275 21 

567.0015 0.20120 

5 

 

8.9879184148 

2857.2156 0.9705 

1.1254×109 28 

2154.6985 0.4210 

 

Table 1. Results of five numerical examples obtained by the N.R. and the I.N.R. algorithms. 
1The simulations have been performed by a PC with a 2.66 GHz processor and 2.00 GB of 

RAM; 2For the same value of the initial guess and a tolerance of 10-20. 
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Conclusion 

A new combined method for the calculation of the energy of a graph was presented. The 

method incorporates the Faddeev–Leverrier algorithm, the Newton–Raphson algorithm and the 

Adomian decomposition algorithm, forming a fast and accurate tool for evaluation of all the 

eigenvalues of the adjacency matrix of the target graph. Based on the comparisons, it was shown 

that the proposed scheme is superior to the classic Newton–Raphson algorithm, yielding the 

eigenvalues significantly faster. This advantage would be of interest from a computational point 

of view, especially for graphs with larger numbers of vertices and edges. 
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